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The camplex interrelationships of computer systems within the 3::
BM/C3 setting impose stringent requirements on their performance. E”‘;éfa
They must reliably produce correct results within a minimal period of _'&i‘:
time and without exorbitant demands upon external resources, At the e
T
same time, they must be capable of flexible and dynamic response to ::E‘{:gg?:::'
changes in the processing environment, adapting quickly to fluctua- ":::."ézséa
tions in coomunications, threat assessment, resource availabhilitv, and v '.'
so forth. This need for intelligent and adaptable behavior indicates :"..'.
that the integration of artificial intelligence algorithms may provide '.:,é .,‘,:,:
significant enhancements in the behavior of BM/C3 systems. :i'
The history of poor perfomance demonstrated by past Al systems \%.j'.:
has made real-time behavior an issue of concern. Can optimizatinn E{:S;;:?
techniques be systamatically applied to Al programs in order to bring f:ﬁ;
their performance up to real-time standards? Does any such improve- E}E&::'.\
ment presuppose the development of new hardware and/or software capa- E"E:\..\
bilities? The present report discusses the feasibility of optimizing ::.\'3
Al algorithms using currently available resources and methodnlogies \.;%E%’-E
and proposes a strategy for maximizing improvement potential. EE'(EE\
The issues involved in optimizing Al programs can best he :,-_\;_;-
understood if we model the performance of an Al algnrithm in a :E'\-;E__E
real-time situation as a series of problem solution systems operating ,::::\(
QNN

concurrently at different levels of abstraction (see Figure 1). At
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Physical level Execution System
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Figure 1. Program Performance Modeled as
Concurrent Problem Solution Systems

SURNHINLN R AR N

e
e
rod

s
"
Pl

T
2

e },’
ey

ey N 48
L J
'."r,':"- L8
. .. .l
%%

e
o

*w
..

L4 »
e
Cle

[4
4

e

TE
5'




000 tat bag € ca at @ ar ™ ‘L o rat e utdt ata o 8at et he® Eat L] OO AN R TR VN AN ANV Y Y g o i 4 ™ Rl ats §4s §¢

o Yo )
4 »
b :gc
< L
¥
L) f\ y
R z‘)‘
:' :.':“-:
Q 4-"-') A
the highest level is a logical description of the problem and the >
. A
. steps required to solve it. At the lowest level is a physical system, 5&« :
“ l‘ - (]
" the architecture configuration executing the solution. Between the ; )
'! W W
_ two lies an implementation system which provides the interface between -
o % AV
Y . ) . S
A logical conceptualization and physical reality. AL
.'-".';'. 4
: An Al algorithm can bhe optimized at any or all of these levels. ;-_‘.('"-;.v
ENTALY
s e Y
The logical system is improved by devising a more efficient conceptual @
q b
W solution to the problem. This may involve a decrease in the amount of :ﬁ.-:
.1‘ 'u"'d“ f
‘ processing required, as is the case with the development of search :;_ o
Q o,
1] Varla X}
tree pruning techniques, more effective heuristic functions for o
) evaluating progress toward a goal, or methods of minimizing the need :’_"._::;j-':
] P NP
e %
P for data retrieval. The logical solution may also be streamlined by f_':::ﬁ‘;
/ ORI
. - A
the development of faster processing techniques such as improved "3
'-f'ﬁ N
¥ methods of discrimination or better data structures for problem :-I}:'."_
o NN
representation. NN
]
. The execution solution system is improved by enhancements to the '__5’
AN
g physical resources. The architectural configuration processes each .:-:-}'f-:
PE I
- _'\‘r‘-‘,‘
! operation by first analvzing the memory, processor, and p:::}_.{
. P
interconnection network elements required and then controlling the
‘: sequencing of those elaments. Improvements include the use of faster
‘ processors, lookahead control capabilities, and configurations
allowing speedier data retrieval, as well as the most obvious
enhancement, the distribution of execiution over a series of parallel
! processors.
)
. The intervening system, the implementation, serves to bridge the
)
' 3
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"semantic gap” between the expression of the problem as a set of
conceptual relationships and as a series of operations to compute " c"c‘l‘

those relations. A certain degre~ of inefficiency is, of course,

A

ety
inherent in any situation where a logical solutior. must be mapped to a J""._"!‘
AN
: nhysical one. By viewing the interface systeam as a separate entity, E\-:»:C
however, we can attempt to improve its transformations as a means of :,;E"_
generally enhancing the performance of the algorithm. This process *:.‘-r:
involves isolating those aspects of the description system which have ?))'EE":E
most impact on execution and establishing a means o»f minimizing >~.\§§:
N2Vt

transfomational inefficiencies.
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Most recent research efforts in the improvement of Al programs

& %
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5
3

have been devoted to the description and execution solution systems.

7
o

The current stndy addresses the feasibility of optimization at the

L

o
e
1

#
n,
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3

f,
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implementation system level by exploring the logical/physical

¥’
7
P,

%

interface and its performance implications. Chapter 2 presents an

"‘f’ %

overview nf the implementation solution system and describes the

o

7]
ol

o

issues involved in assessing and enhancing program performance. This
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A
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establishes a fondation for the next chapter, which discusses the

‘.
’
’

LS5 2 Y
S

limitations imposed by the processing environment and presents

@

comparative studies of program optimization in two general N h
eavironments, sequential and applicative. Chapter 4 introduces the
concept of environment spanning, & strategy which seeks to maximize 1_,‘_,!‘_.
PN
the “"optimizability” of Al algorithms by partitioning programs into :-‘i'_“_}?l
.:,_«;,\-:{r
segments for coordinated processing in a heterogeneous envirorment. A }-::.-f‘_.-:::
e
fina! chapter simmarizes the conclusions of the study. The appendices »
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and applicative enviromments by cataloging the optimizing trans-
formations typically applied in each and summarizing amnirical studies

provide supplementary information on optimization in the sequential

of the effects of optimization on program performance.

»
At

4oy Saf vof @

R

> " TR, = ) ; . ] v P W o
DA A - %.\-\.-.\- NN AR . ) Yh %% %S4
| O st O Rr 2t O BN @ e ”\“....%..wﬂ.v.wo NN
L IR P IR '-n- x NS 8- AR oL Y . . . -~ . )
LR g A SRR AL A B A O A A I S N AT .......a......M.f
LAY w.s RIS .\f\, N NANANNS, WAANENSS ....f...-\.r..w.‘ PO PO A

", LR IR oy )

\’ >




XS4
% 2

:’"

7

2 Implementation of AI Algorithms

v
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The artificial intelligence aigorithms developed for battle

management applications are subject *o strict prerequisites. They

.‘p-'

involve not only an umusual degree of mumerical cmputation, but also

ALY

L ]

7

rigid performmance constraints imposed by the real-time nature of BM/C3
systems. Al programs in this setting arce sophisticated and often
large in scale, requiring extensive suppiementary databases which
guide inference and discrimination systems or assist i calculating
heuristic evaluations of goal proximity, resource adequacy, trajectory

fit, etc. The size and camplexity of these programs relogates them to
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a long-term development framework. This has the effect of imposing
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the additional restriction that the nature and amount of processing

Y
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required be predictable, at least to the extent that there is some

,'. - .’
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assurance the algorithm can eventually perform in real-time
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situations. 1t must be possible to simulate or otherwise analyze the

)
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selected implementation strategy, predict the impact of external
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system conditions, and guaranteec that performance can meet stringent
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time constraints.
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As outlined in the preceding chaptar, the implementation system

LS
l’ .

'; .- ’-

(A

’
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provides an intertace between the conceptualization of the problem

solution and the hardware-specific orocessing. 1t encompasses a

l" l' l.'

numbher of levels and types of elements, including the goals and

S

subgnals selected for the implementation, the programming language in

6
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) which the solution is expressed, the translating systems used to map

j'." the program to target machine instructions, and any run-time environ-

:. ment layers which isolate the user program fram the hardware. All of

! these influence run-time behavior, but the nature and extent of their

: effects vary significantly.

3 The feasibility of performance improvement in the implementation

’ system depends to a great extent on two factors: (1) the ability to

S accurately predict system performance, particularly in the sense of

I identifying those features responsible for degradation; and (2) the

t capability of applying some sort of optimizing transformations which 9.
’ enhance the predicted behavior. This chapter addresses these issues
E by examining the general nature of program behavior, behavior pre-
) diction, and optimization techniques. System characteristics which _"!
. impose limitations on the extent of program improvement feasible f-;:‘:_
E within an Al framework are then presented. E::E

Certain assumptions have been made as to terminology. The term

b T
't".{‘r

g translator refers globally to system software which maps a program in :,,.-.,-\_

: — R

N one language (the source) to another (the target). These include -- :3:'5-:
o)

%
h ]

but are not limited to — campilers, interpreters, macroprocessors,

0
'g

R
'l
7 f\f

and assemblers. Similarly, a translation is any mapping from a source

<

55
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Y
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to a target language, typically a one-to-many transformation (i.e.,

-

e A Y YT
L

5
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from a "higher" to & "lower" level). Implementation is used in

’

&% NN

v N e
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5 '. ”J

reference to any activity within the implementation solution system;
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where no ambiguity results, the terms program and implementation

system appear interchangeably. Finally, behavior and performance are

Al J

S-';l'

)
AL
S

7

”
[
[y

[ &

‘ 5- B

ey

v
%

'

W al (Wi ¥ g W W o v wy o w o, Wt N < - N A R T R St s SR S S Rl R R S
T s



used synonymously to describe the observable aspects of execution such
as speed and resource utilization (as opposed to non-observable

features such as fault tolerance and correctrness).

2.1 Fundamentals of Program Behavior

Although the notion of program behavior can obviously be
approached from a number of viewpoints, it is convenient for our
purposes to group the elcecments of the implementation solution system
into twn classes. The first includes those factors relating to th-
processes by which the system is established, while the second

encompasses those influencing the way in which the mature system

X 22,

behaves. A corresponding distinction is drawn beiween efficacy and

oy

efficiency as performance metrics.

&

Implementation efficacy measures the "effactiveness" of the

P
5 8 5
L7

oA
\f
M
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o

58 9%
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system: an effectual program correctly produces the desired effect

o
>

i

oy

'

(without regard to exactly how the effect is achieved). Efficacy is

.',
..:.4..?.1,
Yz

.

. .
A

detemmined from the processes used to create the implementation rather
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than from consideration of the way in which it functions.
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The evolution of an imnplementation system is typically viewed as
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a sequence of phasoss (sew Figure 2. the definition of requirements,
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estahlishing of specifications, design and development of the source
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program, and translation into target form. Each transition from one
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phase to the next regquires an expansion of the probhlem representation
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from a relatively abstract to & more concrete level. Associated with
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each expansion is a series of constraints intended to guarantee the }:5
Wt
[ . \}
.l:-: fidelity and reliahility of the mapping transformation. The con- i\'.";
p‘.. - 4
::‘EE straints imposed at early phases of development are generally viewed ‘.‘::[
N b,
ot as issues of validation (does the implementation dc what is intended?)
"‘ and verification (does it produce the effect correctly?). Efficacy ;i{:-
i
o factors such as these ar= of major concern in software engineering, ':2';:"
R Pt
" but are bevond the scope of the present work.
"\. The selection of a source language and the translation of the
' resulting program are relevant to any discussion of performance
v

- improvement, but in terms of efficacy their influen:e i~ difficult to e
- v ‘
j‘, measure. For reasons which shotld be obvious, subsequent sections :\‘: '.'t

.l
assume that: (1) the implementation languages select<J provide for a E £y
\
.} L
suitable representation of the algorithm; (2) the program faithfully

': describes the problem solution; and (3) the translators available
>
L4
5 provide adejuate and reliable mappings fram source to object code.

: In contrast to efficacy, implementation efficiency measures ,,S
N

) L)

- solution competency: an efficient prcogram executes the task with a ;:::j

: R — P
'j',' minimum expenditure of physical resources (without concern for whether :\‘:.“:E

”
or ot the task correctly solves the problem). Efficiency issues, - _...
-‘.-,'_.r
:J' therefore,derive fiom the manner in vhici the implementation functions :?_::_Z:::
S
- during program execution. ey
The behavinr nof an implamentation system can be characterized as
' a hierarchy of abstract or virtual machines representing logical
)
. levels of functionality (described in detail in later sections). The

> interface betwren one machine and the next consists of a one-to-many
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mapping between instruction sets, with the [inal or lowest interface )

providing a mapping to the machine code of the target architecture. o

.
g
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]

Implementation efficiency is a composite measure of the efficiency of TS
all these interfaces. It reflects the appropriateness of the target
architecture to the task, as well as the adequacy of the transforma-

tions.

L e e o

2.2 Predicting Performance

PU—

The developer of any real-time computational system makes an
implicit assumption that behavior can be predicted prior to program

{ execution and that efficiency is not only an attainable, but also a

measurable goal. It should be noted that execution-time behavior in

a
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itself may not be a sufficient criterion for assessing program
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performance. If the program formms part of a camplex sottware system,
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additional factors such as reliability, maintainability, modifia- ..
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bility, and transportability must be taken into account; in some cases
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these requirements are in direct conflict with the goals of efficacy
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, and/or efficiency.
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A program's behavior can be characterized on a variety of i we
levels, including execution speed, amount of memory occupied by AN
program instructions, data storage requirements, number and type of f; a 5

] onerations performed, need for exclusive access to shared devices, and s
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so forth.l Such measures are difficu:t to quantity and tend to be

e

distressinglv sensitive to specific run-time conditicns. In general,

‘n:' ¢ \"‘
:t': however, they may be categorized as intluencing three facets of :;\. 3
B i
L program efficiency: conciseness, speed, and througipuc. ‘
o™
. Rt
s e
Concisnrness measures the main and auxiliary memory space re- .,,\:ﬂ.
-_— Pa M
oo
14 . . ShtS
W quired by the program for both code storage and data representation. ::ﬁ:
" & ]
R A program maximizes conciseness by occupying a minimal amount of ”
'0
;(:j space. Speed provides a similar metric, expressd in tems of the N
LN W)
An .. A%
2 amount of time required for processing. Since this is influenced by O
o v\
> : .
how much of the program is resident 1n main memor: v ,us how much o4
s, o
3 must he swapped in and out of avxiliary storage, conciseness and speed S::;
. >
) . . . )
e are inextricablv related. The third facet, thioughpuai, assesses -*‘: .
n": L
e
N program productivity or output vis-a-vis input. This measure is -
B P
N ) , . A
AN inversely related to the number of interrupts rausing the suspension ..:‘,\
] LY
s A
,: of program execution. Although somewhat related to speed (& slow :.';;;
-
» [Tl RS
) program is more likely to be interrupted thar a fast ore), throughput G
TS
4 N
- 3 O
- is more representative of external factors. such as the program's Y
< A Y
> -'_.:'.h
: requirements for system resources, file structure nd data redundancy, . :j
" ‘.-. -
w
or availah’e orror nailing facilities. r--.')-
A
) '._-’._J‘-
>, Although *he rature of conciseness, spe-d, and throughput are .:’,','
NN
M easily understond. their evalustion is difficult. The crux of the N
-~ VA

e e LS

v

P The distinctions are rot always clear; some program envi- x*'_-\.'j\'
roameats, for example, d5 no. differeaiiate between program data NN
(instructions’; and problom data (variabie storage). For purposes of .

claritv, those tsanes are deferred until later chapters.
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problem is the identification of suitable standards for testing
efficiency. A software developer needs to predict the behavior of a
proposed implementation assuming it is designed ar: carried out with
"average" programing skill and is executed utilizing "average” data
on & system running under an "average" load. The use of the criterion
"average", however, while perfectly natural to the human designer, is
often a statistical impossibility in terms of the computational
system. The assessment of program performance is commonly reduced to
a discrimination process which selectively isolates specific examples
(benchmarks) from the program solution space, further restricts those
examples by the application of selected input (test cases), and
executes them under selected system conditions, often simulated (see
Figure 3). The resulting measurements are at best a rough approxima-
tion and at worst a gross misrepresentation of real-time conditions.
The selnction of test programs commonly entails the use of an
evaluation suite. This may be composed of task-specific, application-
specific, or naturally-occurring benchmarks, or any combination of the
three. Task-specific benchmarks, which isolate particular and
presumably typical program activities for individual measurement, are
the performance evaluator's version of unit-level testing. Although
they can be a valuable source of data on speed and throughput,
task-specific tests are often misleading because they cannot refleact
system interactions or load conditions. Furthermore, they are
inordinately susceptible to "edge effects", or the non-representative

results which occur when a program slightly exceeds or barely misses
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critical limits (such as memory page size or 1/0 transmission bounds). N )
iy
To a certain extent, application-specific henchmarks, which 'j;j:;
- "
nJ.\ o
attempt to provide more realistic measurements by modeling the pro- :a:'}.:,;
-~
PANAS
posed solution on some reduced scale, campensate for these drawbacks.
R
They are prone to the biases typical of any modeling situation, ::;:,,.
:f,\-"d'
however, notably oversimplification of the problem and the failure to t';’f;"
N,
accurately portray the effects of system load. Since they execute on @
i
. . Aot
a reduced scale, there is also a tendency to atypical behavior, such ' ".:::::.':
it
as a distorted view of initiation versus execution costs. m‘ b
. )':515._\
Naturally-occurring code may also be selected for benchmark ®
L3y
oo o,
analysis. In this case, existing programs which solve related prob- :'.';:';\.
l“"‘* ¥
ALY
lems are utilized in an attempt to approximate "real-life" processing .::j'_-;"a
Wiy
conditions. Although these are somewhat better than other benchmarks @
TRIRR
in reflecting the effects of system load, they are often biased toward :ﬁ
e Ny
a specific problem or implementation system. They are also more '::::'5!‘.‘
u'.’lﬁ. J_‘..
likely to reflect individual levels of programming skill and/or .
ot
system-dependent optimizations. :-;:j-\.",
‘.-*.r:‘:’
Occasionally, criteria other than benchmark suites are used to -:-‘,:':-.{
Yot
assess program behavior. The most coammon approach is to evaluate the , .;__
Y
I A W)
mappings which provide the interface from one abstract machine to the '\'}\_ o
AN
next by identifying the number and type of instructions generated at '\\,5..‘_:-
I\JM_.
cach level and ultimately quantifying the time required to execute the -
:__.)“_.r,\n'
physical machine instructions. The primary drawback ot this methodo- -}';:'.'f-:.-
ALY,
. o*,
logy is that it cannot adequately reflect external run-time conditions ":_‘f‘
':."\.’;; ]
influencing program behavior, such as system load, resource contention ®
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DAt
v al
15 ENRE
RN
n
Yy
\‘:\\- "
'y v!'
AN
:'_\':'_::',:
N N e AN e T N A i AT NS e T T ST




! y . " o
P TN R R R T I R T R I P T VL A AT AR UL/ A S A A A I

T Y

S

l:'i‘

\"-

'.L-'-

problems, and communication blockages. Like task-specific benchmark
tests, this type of measurement is also susceptible fo edge effects.
! It is obvious that no single methodology for evaluating program
behavior accurately portrays the interrelationships among conciseness,
speed, and throughput. The assessment of program behavior is still a
black art, and few guidelines are generally applicable. These caveats
should be born¢ in mind when later scections discirss the results of

benchmark analvsis.

2.3 Improving Performance

4

(.l

The performance requirements irherent in real-:ime computation o

('S

systems have engendered a widespread interest in the development of

g

techniques for program optimization. 1In general, optimization refers y

L4
to the transformation of a program implementation in order to improve o
its execution-time performance. The temm is often applied loosely to
any translator which makes a significant effort tc generate efficient <

N‘.\.J. L
target code; it is, however, better applied to specific attempts to ‘}3: W
rearrange or alter program operations so that the target program is Sty
more efficient than that generated by a direct translation. :

~ .
The torm optimization is nisleading for severial reasons. First, R

P s

the motion of optimality i{s imprecise. No known metric suffices to o

describhe brohavinr dynanics and, as tndicated in previous sections,
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unique optimal solution exists and that it can be recognized as such. ®
This is extremely unlikely, in view of the camplex interrelationships \.‘.-s.,\i

" among individual performance characteristics; optimizing transforma- Wty
tions can rarely be applied without ambiguity, and the improvement of

one aspect of a program's behavior can have adverse effects on others. RV

o

Finally, most existing techniques are applied on the hasis of pre-

execution program analysis, restricting their activities to those o

X portions of the program which are not overly dependent on run-time ”
ol

values. o
T

In spite of its inappropriateness, however, optimization is the )

term most generally used in reference to pertfomance improvement. The ::_,.zp )

. present report will use the words optimization, improvement, and fV; o
®

enhancement interchangeably, with the understanding that they repre-

[ ARAN
)l sent a relative rather than an absolute goal. ;-‘.(-":
J P AL
. '.:."\"-.
v Central to the idea of optimization is the concept of program -‘_'_-‘:I:
N
equivalence. Since any number of programs can be devised to produce .
identical run-time results, the goal of program improvement is the 0
v 5
< generation of the most efficient means of achieving the desired NS
) results. Optimizing transformations thus represent automated attempts e .
! to improve upon the programmer's description of the algorithm. Such T
- ‘f:'.'-
. alterations are important in order to campensate for the inefficien- SRARA
cies inherent in the use of high-level languages, which often suppress ez !
A A
Mo Qe
X those details of the object language having mnst influence on program "_.:‘,,'.
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The implementation of program improvements presupposes the ®
AT
. . Zaix
: formulation of a set of trans{nmations which will produce a program :.-N,f‘(
“ -'c '."- 1
iy "

equivalent to the original. Each such transformation is described in e

terms nf the relationships between program elements which are

AN,
necessary preconditions, in combinatinon with a meaning-preserving ::E-.?

, transfommation rile. Any constraints governing the order of applying -’EE’.::

. transformations mus?t also be supplied. The situation is complicated ..;;'.;

_.: by the fact that relatively few optimizations are finite. If a ‘:.'::‘:;:::::::'

transformation can be repeatedly applied without ever reaching a point .‘.':::‘
where it is no long~r possible to apply it, artificial boundary L.

3 .
conditions mist be established to temminate the process. Additional :‘:.l.t
safeguards may need to be instituted in order to prevent conflicts ::.‘::
between individual transformation rules. '! |
A

Y The concept of meaning-preserving transformations can most :;:Eg

‘ ecasily be understood by viewing the execution of a particular program _';:EE
as a sequence of actions (Ay ... Ap). For reasons which will be made :-.-,--:

\ clear in later chapters, these actions should be considered abstractly é
and not equated with program instructions; since each program action ,‘3
is explicitly renresented, there are no control constructs (e.g., *\.“’

branches. loops, etc.) ir this represe-atation. Figure 4 illustrates \EE:

| the application of five conmonly annlied ontimizing transfomations to j"_‘-'_": :
such an execution sequence. Note that sume of the improvements may be :-\v-\-’:;
contradictory. For example, the replacement of an action by a faster :\\:\
equivalent may increase progran storage spece as it shortens execution :_.::\
tim~. Similarly, the elimination of redundant calculations saves time (]
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and program storage but may increase requirements for temporary data
storage.

Improvement strategies can be classified accoriing to a variety
of criteria. As indicated in Figure 4, it is common to group trans-
formations according to the type of improvement effects (e.g.,
reduction in execution time, reduction of instriuction storage, re-
duction of data storage, reduction of 1/0 interfaces, rtc.). Other
categorizations are based on technique applicability (machine depen-~
dent or independent optimization), scope of improvement efforts
(local, global, interprocedural, etc.), number of applications (finite
vs. infinite transformations), and of course the particular type of
technique used (e.g., expression simplification, code rearrangement,
operation frequency reduction, peephole optimization).

An alternative approach is to view optimizations in terms of the
implementation stages at which they are performed (Figure 5). Source-
level transfommations are applied by a preprocessor which generates an
altered version of the source program, allowing machine independent
(but language dependent) improvement strategies. Object-level
transformations, applied by a postprocessor to the machine code
generated by the translator, are conversely machine dependent and
language independent. Most current implementations of optimizers,
however, are incorporated in compiler systems and operate on some
intermediate form of program representation. The transformations are
of varying degrees of language/machine dependence, according to

whether they are applied during the syntactic analysis, semantic
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Figure 5. Implementation Stages at Which
Optimizing Transformations May Be Applied
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attribution, target cnde generation. or poephole obtimization rlast
stage of code :2neration) phase.

To be eltective, an optimization Jechnigue Tust giarantee M-
proved performance in 11! possitle execution casiss o0 TUSL TO% change
oither program behavior or results, even it erooition iy ahnormally
teminated. Ik addition. it should be cost efisctive 10 terms of the
time required to perforn the trans:ornatinn comparea Lo tihe execu-
tion-time improvement which will be reaiized. Although ideally it
<shonld be possible to apply transformations consocutively with no
ambiguity or conflict, in practice most improvomern . chniques are
complex, of uncertain duration, of limited appl!icability, and often

contradictory in nature and results.
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3 Limitations on the Potential for Optimization

Although the nature of optimizing transformations poses some
inherent difficulties, the greatest ohstacle to program improvement
stems from the manner in which the implementation system functions
during program execution. The descriptive solution system specifies a
problem by defining a series of relations (among, for example, input,
output, sub-problem solutions, inferential systems, and solution
goals). Within the execution system, the same elements have been
reformulated in tems of the ways in which the relations are computed.
In providing a logical/physical interface between these systems, the
implementation establishes a general paradigm or tframework within
which the solution is expressed. Since this paradigm eftectively
creates an environment guiding processing activities, it will he

referred to as the processing enviromment.

In this chapter, two general processing environments, sequential
and applicative, will be contrasted. As their names suggest, the most
obvious distinctinn between the two is the notion ot program control;
this is not, however, the only point of diftference. FEqually clear
distinctions can be drawn on the basis of such features as the
relative importance of data definition versus data manipulation in
describing the implementation, the meaning ot program symbols, the
moment at which properties are bound to them, and the number and type

of interfaces which are layered to torm the implementation system.
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A sequential processing envirsment views the underlying archi-
tecture as a traditional von Neumann machine. This does not necessar-
ilv mean that the prncessor controlling execution is sequential, but
simply that the problem solution is describcd in terms of a sequence
of steps to be carried ont 1n a detemined order. Historically, most
views of compu.aticon have been based on the notion ot instruction
sequencing and by far the majority of existing systems operate along
these lines. As a natural consequence, most sotiware implementations
maxke use of this processing enviromment.

The naturs o! <equential proacessing presunporscs a relatively
constrained representation ot the problem solutisn describing its

progression from start to finish; a program is there ..’ cxpressed in

terms ot a series of operations which manipulate data. For this

[

reason, most programming languages designed for a sequential environ-

ment are called "procedurai”,l “algorithmic”, or ' imperative". They .

provide general data formatting ceapanilities as well as high-level

¢
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versions of the slanentarv control sequences availlable on vorn Neumann
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architectures, such as repetition, selection, branching, and inter-
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seqitencing (subprogram linhsge).  Although the sections on sequential
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implrmenta*iors, this 1s for illvstrative purposes only. The

similarities among procedural lang ages and sequential implementations

A

1 The use of "procegdrc” in ret.rence to a sub-program unit thus
derives from the termm "procedural” (i.e., sequential) describing the
nature of pmngram specificatian,
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are so fundamental that they may be viewrd as essentially homogeneous
in termms of their implications for program optimization.

Although most existing systems are sequenti~l in nature, Al
programs are typically implemented in an applicative or non-sequential
processing environment. This type of enviromment does not view the
underlying machine as a von Neumann model of computation and therefore
is not suited to the same types of optimizations. Whereas the
sequential enviromment approaches execution as a discrete series of
algorithmic steps, non-sequential processing revolves around such
concepts as reduction, resolution, and unification. Again, this does
not imply anything about the nature of the processor itself. In tact,
since the majority of existing computer systems rely on sequential
processors, most applicative processing enviromments are superimposed
on sequential implementation layers. It is only with the growing
interest in largescale Al programs during the past decade that
non-sequential architectures have become a viable processing
alternative.

Non-sequential problem solutions are more concerned with defin-
ing underlying relations than with prescribing their computation.
Just as the procedural languages provide a natural expression of the
sequential approach, non-sequential processing is best described by
the "symbolic" or "definitional" languages. These can be subdivided
into three groups which have evolved along divergent lines since the
first symbolic language, LISP, was developed by McCarthy in the 1960s.

The largest and best known group cncompasses “functional” lan-
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guages, which view a program's output as a function (in the mathe-

'."4:
[y

P i

! matical sense) of the input. During »xecuiion, successive reducticons
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are used to simplify the program functiion until further applicatiovns
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are impnssible. Recursion and functional cumposition are the primary
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. control mechani sms, with each operation performed when the result it
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generates is needed by an inveking instruction.

%
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In contrast, "logical" languages employ resolution and unifica-
tinn as their primary processing mechanisms. Program execution is
approached in terms of proof derivation. A series of propositional
logic implications formally describe the underlying *-ims or assump-
tions and any inferential relations between them, with the desired

, output expressed as one or more queries. To satisty tn- goal, appro-
npriate patterns are selected tfrom the cule base to produce a solution
space.

The third class includes the newest addition to the spectrum of

programming languages, the "dataflow" languages. As the name sug-

"y "d
»

gests, these approach execution as inherently concurrent, with the ,
firing of each instrmiction dependent solely on the availability of its o
i
data inputs. Dataflow operations, like their functional and logical .. 9
, _ , PN
cnunterparts, rre expressed in tems <f functicnal applications. NN
T
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Although recursior is eliminated as a programming tool, the mathe- ;-;:-::-::
matical notion of function is extended to allow the return of more . -2
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appropriate only with respect to a functional or reduction paradignm;
, unification and dataflow systems more properly constitute separate
non-sequential entities. The only systems which arc currently capable
of meeting real-time performance standards, however, are applicative
(this topic is discussed in more detail in the next chapter). Fur-
thermore, the three systems share almost as manv fundamental simi-
larities as do the procedural languages -- as witnessed by the fact
that virtually all post-cxperimental implementations ot logical and
dataflow languages are interpreted representations relying on
applicative evaluators. In keeping with the objective of assessing
the feasibility of optimization using available methodologies,
therefore, the discussions of non-sequential processing emphasize the
applicative model.
The sections which follow examine the functional characteristics
a of the implementation system in general before focussing on teatures

specific to the two processing enviromments. Particular attention is

| given to those features which have implications for program
N optimization.
. 3.1 Structure of the Implementation Solution System

£ Between the computer which the applications software user sees
and the physical machine controlling execution are a series ot

abstract or virtual computers. Each level in the hierarchy represents

i a functionally distinct machine with a specific instruction sct,
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resource configuration, and implementation strategy. The implications
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for optimization are critical: program improvement at one level does
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not necessarily result 1n efficiency at the next.
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Figure 6 illustrates the abstract computer S.erarchy for a
tynical implementation system. At the highest level is the machine
defined by the applicatinns progrem. The "program” 1t executes is the

input data, and execution is expressed in terms ot the operations
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available irn the high-level language of the source program. Although
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instructions provide an interface to yet another abstract machine,

2

this time exccuting the primitives provided by the operating system.
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functions to physical machine instructions.!

The abstract machine hierarchy thus bridees the semantic gap
hetween the description and execution systems by successive intorpre-
tations. The multiplicity of layers greatly camplicat~s optimization
activities. At rach level, operations must be expressed in tems of
the availahle ins*truction set, generally without regard to the appro-
priateness with which those instructions will be translated into the
next machine's operations. Inter-level transformations thus tend to
be “"black boxes" from which little can be assumed about the ultimate
fate of optimization attempts.

The hierarchy of abstract machines clearly parallels the common
stratification of programming languages into classecs of varying
degrees of machine dependence (Figure 7). The similarity may be
misleading, however, since the selection of a particular language does
not necessarily increase or diminish the numher of implementation
mappings. The level of abstraction of the language does determine to
some extent the degree of optimization feasible. A programmer using
assembly language, for example, can modify his solution to take
advantage of specialized insiructions, while the user of a very-high
level language may unwittingly exoress the program in such a way that

no improvement is possible. In general, the difficulty of trans-

1 Many implementations actually invelve more levels than are
shown in Figure 6., The "operating svstem computer", for example, is
generally sub-stratified into a library program level, a utility
level, and nperhaps a supervisory level. Fach of these has a distinct
set of primitives providing a transition to the next lower level.
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face levels. The imnlications of «upport layeriry should be obvious,
since each level conceptually represents an abstract machine: the
numher ot transformations raquired during exesution is in direct
nroportion to the depth of support layers.

Suppose that a given machine M, in the systmm receives as input
a version Py ot lhe program. Py inciudes lwo portions, a control
srgment constnicted from the instricticn set for M and a data segment
consisting of a series of storage elaments; Lhese are represented as
Iy = {il' 19, .., i_‘;} and DM={d1, do, ..., dk% , resnectively. M
transforms Py to an ontput version Py, targetted to 1 ~oxt machine,
M= deen, Iy ={iy, v e ipband iy =fary, arg, L d'nd.
Because M' is closer to the pnysical level than is M, :: is typically
the case that |Iy+'| > |Iy) and |Dy'| > |Dyi. Below M' are additional
machines M'', etc., each processing a more primitive level of instruc-
tions.

Since it represents the cumulative efficiency of all abstract
machines in the system, program efficiency 1S 1n general adversely
aftected by the numher of support layers. When a short-circuit
channel exists trom M to M'', however, it becomes teasible for the
ontput prograr o include some iistructions which are already
targetted to tine lower machire, thus obwiating one or more levels of
transiornation. A weil designed translator can mitigate the effects
of layering by expressing tre ontpul program an sucin a way that it can
continie Lo be trans:inrmed effic.entiy at lower levels and/or take

advantage of short-circuit channels to bypass processing.
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3.3 Optimization in the Sequential Enviromment .’s?\\%'.
To optimize program storage space, it is c¢l.uarly necessary to " "‘

minimize
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size (pM") = size (IM") + size (DMn),
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where M is the final (lowest) abstract machine in the implementation
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system. (Note that a minimal total transtormation does not nec-
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this is typically the case.) Time optimization is not as easy to
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characterize. The generalized view of execution (emploved in the
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preceding chapter) as a linear series ot program actions must now be

RIS
s

3
(R

b
PN

reformulated in terms of the abstract machine instructions used to v

express the program, including nonlinear control directives. Total _-_;-.:
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execution speed will depend on the speed of each target instruction
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and the number of times -- possibly none -- it is executed, rather .
than the number of instructions (i.e., IIMnl ).

The remainder of this section will refer to program execution 1n
terms of the operational semantics of a single abstract machine, M,
selected arbitrarily from the implementation system. In describing
the effects of executing the program Py, it should be obvious that we
are modeling the simultaneous operation ot all abstract computers in
the contiguration. This is consistent with the observation that
available optimization techniques are based on general aspects ot thes

control/data dichotomy rather than features specific to any single
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processing level.
Program execution in the saquential processing environaent is

commonly viewed as a series of transitinns from one program state to

another, Fhach state is described in teras ol a rointer to the next
aperation in the cortrmmi segment and the current configuracion of the
data segment. In terms of th= rotation already cstabiished, a program
state is therctore a pa‘r (i,D), where i 1s the instruction to be
executed next and D the contents of the data sogment. Execution is

mndeled as a computation siquence, or series of the form

(ig.Dg). (i1,Dy1), ...,
indicating the progression beginning at the initial program state.
For each state in the sequence, the successor state ' determined on
the following bases:

next _instruction(ip) it i, does rot cause a branch

ins
target _instpuction{ip) ctherwise

Dpet = Tn(Dn),
where T, is the transtormation on dati elements effected by the
instruction iy. It the program enas, the series is teminated by a
final state; otherwise it cycles indefinttely. A snapshot is a state
pair (AJ,DJ) v the computal.on swquence, 1epreserting the configu-
rition after j-1 statimentis have extcuited. (Note that i refers to a
posicion i, the cnronology of exocutioe and not to a relative location
in the program def-nition, It 15 therefore possible that the control

segment (Iy) might include insiructiong which are not attainable from

38

4 5
SH9%S
t’.'f‘.t'.- 4

WIS ) 1
AT
X !
AP Y
[ §
1.,“- -.'i

"‘
%

f o T |
O
£

]

’"n

{ ¥
-.: ’
o

G5
[ XA s
5%
Py 1’{
A -l

>,
e
>

Pl
ok

P s

n’..l

’
4

ﬂ'-"c

q Y ;
d _ &h
(AN

.

[d
4

y

Pd

XK
) Pd
Xy

.%

<
%
>

‘I 'l ‘. N
e
o

a
Yy

Y

s

L)
-
.

ﬁ.‘ﬁ’ * ', r" -'.. -
A
AR A

e

»
f"
a
a
;/

!"l “

.

CY Yy
~



A R AR A S R A A

the initial state. Any instruction occurring in a program state
snapshot, however, is by definition reachahle through at least one
computation sequence.)

It is important to observe that the camputation of the next in-
struction of the control segment is distinct from any transformation
made to the data segment. Because to a large extent control and data
function autonomously (with the obvious exception that transters of

control mav be contingent upon data values), they mav be analyzed

independently; hence the terms control flow analysis and data flow

analysis. Control flow analysis establishes the feasible progressions
of the i components of program states by considering what instructions
may be executed in what sequences beginning at the initial state.
Data flow analysis, on the other hand, concentrates on the range of
the D components by determining what values mav be taken on by
individual data items.

Appendix A describes optimization activities in the sequential
environment and summarizes the results of studies attempting to
quantify what effect optimizing transformations have on program
performance. In spite of the inconclusive nature of this data, it is
possible to generally identify the teatures of the sequential
processing environment having greatest intluence -- tavorable or
adverse -- on optimization potential.

The importance ot the support systam contiguration has already
Both the number of layers and the quality of the

been described.

translations influence the overall etfectiveness of improvement
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efforts. In addition, optimizatior activities are favorably
influenced by such progranming practices as the intelligent seloction
ot data formats to minimize the need for coercion or conversions. the
nrganization of expressions to facilitate the application of algebraic
transformations, and a caretui placement of non-optimizable
sibrxpressions (such as those involving invocations of user-defined
functions) with respect to loops cr other control structures.
Optimization is adversely affected by the use of language features
which interfere with control and data fiow analysis or value
propagation. These include, tor example, alissed or dynamically
allocated variables, globul or other data storage which is modified by
side effects, unconditional transfers spanning sever2! control struc-
tures (e.g., a GOTO whose target is outside the bhoundaries of the
enclosing logical interval), the use of control varianles (i.e., entry
and label variables) and/or directly or irdirectly recursive
subprogram units, and mixed mode expressions.

Optimization tec:.iques in the sequential #rvironment, as we
have scen, rely extensively on a few fundamental assumptions: (1) a
hipartite contrel/data orgarization, consisting of an immutable
control segment and a mutsble dat. store, f2) tiie use of program
svmhnls as references to specific locations in tne segments; (3) a
suhsequent dependence nn static (pre—-execution) analvsis to associate
or bind symbcls to locitions: (4) an uitimuate restriction of program
contral to verv simple prinitives, namel sequencing and conditional

pranching,; and (5) a corresponding reliance on iteration and selection
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as the basic control flow mechanisms. Any deviation from these can
seriously impede improvement activities at all levels. Consequently,
the two factors mest important in establishing p.tential for opti-
mization are, without doubt, the way in which the problem solution is
expressed by the programmerl and the configuration ot support lavers

X in the implementation system.

[ 3.4 Characteristics of Applicative Processing

% Unlike the sequential enviromment, applicative processing does
not employ a bipartite organization nor does it approach problem
solution in terms of a series of operations manipulating data el

L ments. Instead, a program is a function aprlied to the input; the

d resulting value is the output. Since no real distinction is made

between program data and problem data, a single ¢common representation

is used to represent all program elements internally. Function

; definitions and data items are both stored as linked lists composed

: ultimately of atoms. Even language primitives are atoms 1ike any
others, distinguished only by the fact that they are defined by the

; system when execution begins.

! Furthermore, the value of a symbolic language tunction, 1ike

its mathematical counterpart, is determined solely by the values of

o 1 Recall that this is independent of any consideration ot how
! well or poorly the selected algorithm is suited to the problem,
although of course even the hest optimizer cannot compensate tor an
inefficient algorithm.
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i1ts arguments. This properiy, called refereatial transparency, has a

d _cpag e s el

profound impact on processing organization. At 4 given point during

Y

execution, the camputation to be performed depends orly on curreas

o
<

2

context, not on the history of actionrs whicr :ed up to it. The
notions of program state and computation sequence are therefore
ontirely absent from the applicative environmment.

Since program symbols no longer represent locations in the data
store, the fundamental units of procedural language programs (expres-
sions and assigments) lose their power in the applicative setting.
For example, the instruction

A=8B

in the sequential enviromment indicates that the conternt = of location
B should be retrieved and copicd to location A, overwriting any
previous value, I'n the applicative environment, an instruction of
this sort is viewed as establishing a definition or association
between the values of A and B, rather than performing an operation.
Since A and B have no "locations™ per se, values are not directly
stored or copied, a trait reflected 1n language syntax, which
restricts the appearance of a variaole to the letfthand side of only
one oqiuatisn cer srogran.  (Nonte "nal because it is the notion of
definition rather than camputation whizsh is implicit, the statement
A=A+1 is mrearangless in the applicative erviromment.)

Instead, the opower o{ the applicative environment derives from
the homogencous treatment accorded ¢o all program elements. Programs

can b creatad dvnamically by other programs and then executed. A
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data list mav be transtormed into a program list and vice versda, with
few if anv restrictions. Since program symhols are viewed as values,
they may freely utilize non-consecutive bounds or nroperties which are
established and altered dvnamically.

In kKeeping with the notion of tunctional organization, the
primary control mechanisms are purely applicative:  tunctional compo-
sition and recursion. Even the conditional construct is generally a
simple variant ot the projection function, wherchy the value returned
is the first one computable by the temms ot the construct. Operations

on data items are considered to have locality ot ettect, that is, they

‘

3 'l..‘

) Bt At
Py « @

produce new items rather than altering existing ones. As we shall -;23 .;
sen, this has important implications for parallelism. Z‘é“'.:_
N
An immediate consequence of the tunctional apprmach to nroblem ,-'\-.N.;.
T
solution is that almnst no von Neumann hardware-related features can _';.,:;
be used directly by the applicative enviromment. If the underlving :&;EE
architecture is sequential, program execution must he similated bv one :-" ':."
AR
or more extra abstract computers that indirectly interpret applicative E-':j
actions, using seuential software routines which can be translated \.tfz:.
SO
directlv into machine primitives. Figure 9 illustrates the contigu- \“".\
CAP AN
ration of system support lavers typical to most svmbolic language ::Zf-i:."-_\.:
IO
implementations. Figure 10 represents the configuration when the "\_\:1

underlying architecture is non-smquential. In this case, much ot the

sotftware simulation can be replaced by a tirmware interpreter that

.
e

e
I

translates software primitives directly. RS
‘o
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Below the applications program machine is an integrated langiage

environment, which supplies dehagging aiis ano perhaps other develop-
ment supnort tools.  [ts autpur 15 in the tom of the prinitives used
hy general langunage supnort tacilities, primarily ' 1rterpreter and
the garbhage collector. At th» next iaver, each processing primitive
1s represented by a software routine which simulates rhe basic opera-
tions such as functional! invocations, data referancimg, ard storage
allncation and deallocation. It is at this point that the distinction
hotween seqpiential and non-sequential hosts tecames appsrent.  In most
caonfigurations, ‘he central control mechanisms mu-' . simulated by
means of a software subroatine which effectively converts execution
from applicative to sequential form; from this point .. the abstract
machines will be identical to those of the smuential environment
depicted in Figure R, [t, instead, the target execution system
implovs a symholic processor, the primitives are translated via
microcode at the firmware support level.

It should te clear that a primary cause of inefticiency in most
existing applicative envirorments is the excessive amount of simu-
lation reauireda. The configuration of Figure J suffers not only
becanse of the 1rordinate number of transformations which must be
anplied, Fur also from the difficilties inherent in interpreting
non-<eqren.al o wnstruactions in sequential form.  The situation is
turther exacorhared hw the exigencies of late ninding; even primitive
arithmetic anerations must be "simriate!” to the extent of performing

min=time tvpr: che- ks anvl convoersions.,
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. 3.5 Optimization in the Applicative Enviromment :-:}.-\_ ;
.. “"{ )

-

» _~'. ’
. Since the concept of program state is missing in the applicative :.'.:‘-:“ !
L L Sl 8

, NN

. L . . NS

: enviromment, optimizations based on nomal control flow and data flow 2

e

v analysis are inappropriate. Untortunately, ftew optimizing trans-
N
N formations have been developed specifically for the applicative
£)

environment. This can be blamed to a great extent on lack of demand,
: due partly to the lack of popularity of symbolic programming prior to
N the mid 1970s and partly to the habitually casual approach to effi-
X ciency taken by the artifical intelligence community as a whole. It

" is to be hoped that the recent interest in real-time Al applications
R will result in new developments in this area.

! The simplest way to achieve significant pertormance improvements

g is to take advantage of the compilation facilities offered by many
- applicative implementations. A compiled function is transformed into
- instructions corresponding to those produced by the language primitive
- abstract computer. When the function is invaked, only the tirmware
:"_' interpreter (or its multilayer software equivalent in the case ot a

sequential host) is needed to complete the translation process.! Al-
9 though this cannot he considered an optimization technique in the
strictest sense, it is the only means of improvement available in many

’ ,'-P:.r_'.-_
" 1. s . . - . AN
4 It is not often possible to entirely ¢liminate high-level Wl
.‘: interpretation, however, since most configurations require that even .',.h:' :
¢ compiled functions be activated through the language enviromment laver ;'-:-:-';:-j
: rather than hy direct user invocation. Tt
) 47 SR
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Like their sajuential cousterparts, symooiic larpuage optimizers
make several assumprions shout the nature of inont programs, deviation
trom theso norms impedes or preclides improvement. Oa the basis ot
locality of oifect, :ata dependencies are considered to he localized,
i.o., subprogram urtts have nn side effects.  Since the basic control
mechartsms are functional compos:ting and reciirsion, programs are
assiumed to be made up of a large number of smill, cften recursive
anits., This means that a substantial poriticns of exccution time is
devoted to activsting the linkages between units ‘inally, late
binding is quintessential in the applicati’e eavironment. Static
analvsis cannot sutfice to asscciate symbols aith ati - butes since the
properties of both functions and data items may be created, redefined,
or destroyed a*t arbitrary points during execution. Instead, a heap
area must be maintained in which storage may be allocated and
Tiallocated in 2 relatively unsiructured fushion.

Program evocutior, in the applicative enviromment can perhaps

hest he seen i< the alterration ot two) activities, substitution and

simplification Sube titutior {unlolding) refers to the action of
replacing a prosen svmbe 1 by 1ts d=tinicion. “his is followed by

simplification ¢ovdcation), which rentaces the definition by the
ettt obtainen throach ovalusting the vyav of the definition. In the
case of atoms and Jdeta Tists, sinpliraication is trivial, since the

valus is obtirned through & search ! the storage area. For tunc-

“1nans. simplifice2tiran waill require the application of additional
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substitutions and simplifications, perhaps recursively.

Appendix B describes the optimization techniques which have been
developed for applicative environments. An atter;t is also made to
evaluate the results of studies on the effects of applying such
transformations. It is quite difficult to characterize the features
of the applicative processing enviromment having greatest intluence on
optimization potential, other than the prescnce/absence ot the
applicative-to-sequential transformation. The paucity of behavioral
data, coupled with the disturbing nature of available results,

relegate such efforts to pure speculation.

&t

If we assume that current techniques address the real problems

B
"‘.\"\‘t"‘

-- and this is by no means a safe assumption -- then improvement

’ 7
v

'

should be facilitated by the concentration of numerical computatinns

/o

_.
:
AT
y 2

in fewer subprogram units and a reliance on purely applicative

(s
LA

-+

4

BN

constructs. The use of "special"” features which make a symbolic

.

% A
v s
X
'’

:
«

»
{l

language resemble a procedural one should be avoided, narticularly

'/l.'..

’{I"‘

X,
A
U
e ila

. &
B «

iterative structures, GOTO-like transfers, and pathological hinding

- N
.
Vb
.

[

v

strategies. The use of type declarations, however, should be

.- .
P
L, &

beneficial since it would facilitate several types ot improvements.

A

[

Optimization techniques in the applicative environment rely on

the following assumptions: (1) a hamogeneous inte-rnal representation,

. ]
RO

.
A
:
.

(2) the treatment of program elements as definitional values rather

a,
1""‘."'

than storage locations; (3) a subsequent dependence on dynamic

binding; (4) the use of functional composition and recursion as the

L
‘s %

primary control mechanisms; and (5) a corresponding reliance on the

49
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) 4 A Strategy for Maximizing Optimization Potential ::.:-‘_,'.:‘,.
L P AT,
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SN
: ;'-" N A
Previous chapters discussed the nature of program performance =
\J .\ *
b and the ways in which it can be enhanced in typical implementation ‘_:‘\-"_\
j ]
N
b settings. As we have seen, the types of improvements that may be Ay
.i '-h,-'.-n‘
‘ . ‘ . e
applied are determined by the characteristics of the processing P
. . . o . N
L environment. Particular optimizers may utilize larger or smaller NS
“~
‘4 ) g
. . . AN,
) subsets of the available techniques with greater or lesser effec- oI
NN
J ]
[} . . . . ) 1‘( "."
tiveness, but the limits are established globally hy the environment - Y
b~ ",-P‘-"\ 3
Ca Y ~d
- itself. Since our concern is with the efficiency ot Al algorithms in .-."_::‘;\'
" .‘\v‘,."."r‘-
Y . . . . . A
o the implementation solution system, it follows that we should tocus S
" oSt .'5-.
n R A
‘g our attention on the selection of the processing environment. Py
: The ideal environment would be one which guarantees optimal -.-:",}-\ .
" o
4’ b \V' !
‘- program performance in all cases. Since etficiencv and optimization %‘.
' BN
are at best relative terms, this is patently impossible. It is ®
' Sy
s unlikely that any single conftiguration can predictably maximiz« the
- '
4 performance of even a small subset of the Al problems posed by BM/C3
applications. How, then, are we to realistically select an envi- '
» ronment tor the optimization of an arbitrary Al algorithm? The
N sections which follow establish criteria for evaluating processing
enviromments in terms of their responsiveness to program needs. A
::' divide-and-conquer form of implementation is then presented. Thas
g strategv partitions a program into segments tor processing in a he—
N
. terogeneous enviroment, thereby maximizing program "optimizabilitv'.
.‘I
\l
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4.1 Evaluating Processing Enviromments

Any process which relies nn snccessive transtormations f{alls
prey to the dangers of inefficiency and inaccuracy. The implemen-
tation systam, responsible for bridging the quite considerable gap
hetween conceptual and physical solution, is undoubtedly a major
source of performance degradation in all computing systems. The
development of oftficient Al programs must ultimately depend on the
capability of the processing envirorment to applv automatic im-
proviments which at least partially compensate for this introduced
inefficiency.

One criterion for chonsing a processing environment is the
number of abstract machines in the system. The relationsiip of system
support layering to performance has already be~n addressed. Clearly,
the hest layering configuration is that which will require the ftewest
number of translations in executing the program. Relevant considera-
tions include the number of layers present, the availability of short-
circuits to hvpass intermediate levels, and the fact that individual
layers do not necessarily play equal roles in detemmining the overall
effectiveness of the systam. An alternative is to select optimizers
which exploit the nature of a particular layering configuration.
Since optimizing trensformations are never applied uniformly across
all portions of a program, this i1nvelves assessing the relative
likelihood of preconditions tor irprovement and the ability of trans-
lating mechaniams to take advantage of short-circuit channels, as well

as the effectiveness of each type of transtformation. It is obviously

52

3 l",
X
LA

-
s

]
s

"]
W2
§

NN

n’

::\1
b

»
L)

XA
AT -é;{. o

L

> Y
P
2

xr\

]
.
«

R
5

7«
*

PP
4, % "

‘{:’:’Nlﬁ

'l" AL

\’
s

S e e T )

M

"
L

S A .
AR

2
42,




'-.'

-
A\

o e T
'?';" LR 3 LY
I L L
LSRR AN

el Sl e ]

desirable that improvement efforts be applied at all levels of the

.‘

7
.

Z
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Lof]

. implementation to achieve optimum performance. The two approaches can

> &

h]

‘:;!

I
g
< %y
Lol

[~ be combined in an approximation of the minimax game-playving heuristic.

%

'y
=
s Fng

X
%

3 The goal is to choose the system configuration which combhines a

minimum number of abstract machines and a maximum degree of automatic

improvement. Such a selection sets an upper bound on the degree of

efficiency attainable by an arbitrary program, hut it cannot guarantee

a lower bound.

Another aspect of the processing enviromment is that it provides

a camputational paradigm within which the problem solution must be

] structured. Here we find that the sequential and applicative environ-

ments, like the languages which naturally express each paradigm,

differ radically. The procedural/sequential approach to problem

' solution concentrates on data manipulation and alteration through a E\}‘;—x
A strictly ordered sequence of operations. The functional/applicative '::'%
solution, on the other hand, computes by value rather than by effect, A
2 so the program description focuses on relationships instead of the E,-'E:a
- AT
: ways in which they are computed. \’.E':-./-
: ey

In terms of computational power, the two paradigms are ap-

proximately equal. Sequential processing corresponds to the Turing

model of camputation with its clear delineation of control and data.

Program instructions are encoded in an immutable store and selected

for execution by means of simple sequencing or conditional transters;

operations can examine or alter the contents ot the mutable data

store. Associated with each action is a program state, which encap-
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sulates the history of the computation to that point and determines
the next action to he tsken. Functicral processing approaches
computing from the standpoint of recursion theory. In this case,
control and data elements are treated homogencouslv as values,
Fxecution is a process of functional evaluation, sequ-nced by
tunctional composition and recursion; the next computation 1s thus
determined bv context rather than history. The class «f problems
computable by means of recursion tieory is not, strictly speaking, as
general as that described by the Turing modrl.  Since the differences
are pathological, however, we can view the two as eqaivalent for the
implementation ot Al algorithms.

The types of optimization appropriate to each :nviromment have
been discussed in considerable detail. Unfortunately, it is impos-
sible to compare the two impartially in terms of performance since
published findings are vague and self-contradictory. Figure 11
illustrates a single benckmark observed by [Gabriel 35] on a variety
nf systems. The results are totally inconclusive. Few details are
explained in the repart (e.g., details of comparative machine
confignrations and some of the options are not described) and the
experimental conditions dn not survive close scrutinv. Furthermore,
the Tak benchmark itself is of qiestionable utility since it involves

some 64,000 recursive calls and 48,000 decraments but nothing more. 1

1 That Gabriel was not purpcriing to compare LISP to other lan-
guages is immatorial: the findings for individual LISP systems are
subject to the same lack of coherence.
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» Machine Language Options Timing
-, S o
5 VAX 117750 | Franz Lisp generic arithmetic 19.9
generic arithmetic 11.6
, PSL* generic arithmetic 71
A Franz Lisp integer arithmetic 3.6
\ c 2.4
v Franz Lisp integer arithmetic, fast 1.9
\ function call
PSL integer arithmetic 14 3 rana
: VAX 11/780 | Franz Lisp integer arithmetic 2.1 g
: 3 . (Diablo) c 1.35 :.(1" ,..’
: MC68000 | Pascal 38 e
b PSL SYSLISP 2.93 e
' (o] 1.9 ::J_-:::i‘. ]
e Machine Language 0.7 ‘-:.\,Q
- Stantord MacLisp 0.832 ‘-f,:'.:
AlLaboratory | mactisp declarations used 0.564 :\"\-':. 3
Machine Language | “wholine” 0.255 * x: '
3 Machine Language | “ebox® 0.184 ’:‘r\:"\
- RS
' * Portable Standard Lisp ':::.\ ;
. DI
~ TR
2. ®

e

Figure 11. Gabriel's Tak Benchmark

- Comparing Lisp with Procedural Languages
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difticult to compare, primarily becauss the compn*atiomal paradigms

y

are essentially 1ncomparihle. In general, the svmbo'c languages )
\ :_.:_.:
) Lo . )
r- allow a simpler, more elegant description of problisis.  (utput can be :5::}'
o -0 (]
] \.}.
’ clearly exnressed as a tunction of input and 2 singl~ aizorithm can be ~ 5“.
X3 1 "1 A vid 1At s bi o ‘n ire cl o f 5 ‘.'\.-
uniformly applied to 1ndividiual cata objects or en ire classes o ._.5‘.\
, o
- NN
b them. Procedural languages, on the other hand, are wore natural to NN,
EaAd
e AT
N most programmers. Their form is familiar and re*)»-ts the human Nl
: tendency to view protler solving as a sequence ot sctions. The
- -,:.
. selection of an environment on the basis of this .« riterion must ;.':":‘w-
: _ . RN
ultimately depend on the problem to be solved. Scme problems are by
; A
inherently sequential and others inherently recursive; it is as KRN
Wy
LAY
N . . . \ : Ca
: difticult to express the former in terms of an applicative soiution as ;}::‘\-_,.\
hY f_:-:'_-r"
" S . . rorsd,
B it is to deseribe the latter sequentially.
c;'-'r
. Represcntational power descrihes the suitability of the en- NS
. R
. vironment for implementing Al programs. The general objective of \'-?_.f_.:-;
- o . . . . LYt
’ artiticial intelligence is to encode knowledge about some domain and ®
3 then use that knowledge to solve problems in the domain. The )
'. environment selected must provide siaitable means for encoding
4 intformation, retrieviag data thel is relevart to the problem, and
: determining » satisfactory solution.  Furthermore, the system must
. conform to software ongine~i'ing standards tor veritication, main-
' tenance, and so forth,  The procedural languages are criticized for
56
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e

their emphasis on calculations rather than tundamental relationships
and the inherent difficulty of proving program correctness. The major
complaints against symbolic languages are the convolutions necessary
to express simple smuencing, the lack of applicability of standard
testing techniques, and the intrinsic inefficiencyv of heap storage
management. Overall, the emphasis given tc problem relations makes
the applicative enviromment samewhat more appropriate tor representing
typical Al problems. The sequential environment, on the other hand,
is better suited to the application of software engineering
methodology.

In summary, neither the sequential nor the applicative envi-
ronment posesses an undisputed superiority for the efficient im-
plementation of Al algorithms. Each approach has inherent strengths
and weaknesses which can have significant impact on the performance ot

largescale software systems.

4,2 The Enviromment Spanning Strategy

The Al algorithms needed for the BM/C3 setting can be cat-
egorized in general terms as search, reasoning, or constraint
satisfaction problems. A search algorithm conceptually views the
entire solution space and attempts to find a suitable path through 1t
(e.g., track discrimination problems). A reasoning algorithm
accumulates data by deducing it from previous truths and adds it to

the knowledge base for future deductions (e.g., attack assessmeoent
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axpert svstems). A constraint satisfaction algorithm successively
nliminates portions of a rule base that are inconsistent with the
constraints imposed by th~ gnal to u.timately derive 4 st of objects
which satisfy the conditions (e.g., rvesource alloration problems).
LLarge Al systems often combine more than nne tvpe of algorithm to
solve camplex problems, applying a divide-aad-conquer technique to
reduce the magmtuae of the preblem to solvable prmoportions.

The lack ot conclusive evidence concerning the superiority of
one processing environment over the other in terms of the general
nreds of Al algorithms suggests that a divide-and-c¢onjuer strategy
might be appropriate here too. To investigate this approach, we will
nutline a representative BM/C3 problem and a possihle solution., Our
goal in proposing an implamentation strategy is to maximize what we

will reter to as the program's optimizability. Intuitively, opti-

mizabhility measuras the extent to which a program can be improved by
available optimizers. This is equivalent to assessing how well the
problem solutinn typifies the preconditions for applying compatible
optimizing transtormations.

The case study is an extension ot work originally performed by
Optimizatiorn Technoiogy, In~.. an? later supplemented by Auburn
Umiversity. The initial study {OTI 85] deali with the feasibility of
applviig svmbolic processing techniques to algorithms operating on
optical sensor data in aa 3Di environment. The Forward Acquisition
Sensor (FAS) algorithms developed in Pescal by Nichols Research

Corporation were used as the subject. The set was designed to perform
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sensor measurement processing and precision track and discrimination
functions; it includes color correlation, scan-to-scan correlation,
single target processing, discrimination, irradiance calibration, and
stellar attitude update routines. The OTI study concentrated on the
area of scan-to-scan correlation, where it was telt that the greatest
improvements could be realized by reformulating the Nichols algorithms
for applicative processing. Benchmark results were compared tor
versions in Pascal and LISP on a VAX 11/780. Pascal out-pertormed
LISP in data storage tasks (in spite of the fact that there was some
pro-LISP bias in the data structures chosen ftor the programs), while
LISP was faster at windowing transfomations. The OT[ study consid-
ered these to be mixed results, an understandable reaction in view ot
their stated desire to demonstrate the superiority of symbolic
processing in situations requiring the dynamic correlation and nodat-
ing of large amounts of data.

From our viewpoint, however, this case typities a problem common
to most Al programs in real-time settings. Some ot the subtasks
involved, such as [/0, sorting, numerical calculation, and storags:.
operations represent exactly those operations which arce intrinsicallv
suited to the sequential paradigm. Others, such as pattern matching
and discrimination, intuitively tall into the realm ot applicative
processing. FEach system pertormms well when most processing 1s ot an
appropriate type, and each can be overwhelmed when subjoected to large
amounts of unsuitable activitv., Most programming languages appear to

provide tor both sequential and applicative activities by incorpo—
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rating svntactic features mirroring those of their counterpactis.,
Since the two paradigms are =0 radicaily diutierent, hnwever, the
resemblances are strictly superficial.

To demonstrate the important role played by computational
suitability in setting an uoper hound on nerformance, researchers at
Aubnrn University extondd the OTL routines.  First, ic¢ wis concluded
that the existing programs did not in tact particularly exercise those
task areas tor whish [LISY was most appropriate (e.g., nnitorm treat-
Ment ob program and nroblem data, recursion, and properties requiring
dvnamiec binding), The manipulation of dvnamic prorerty lists was
wdded to *he ariginal pivgran to cortect this bias. In keeping with
e natare of general discrimination activities, “he property lists
wore designed to represent any of a variely of supplementary data
gathered sporadically on a by-demand hasis by speeial-purpose sensors.
Ninee this intomatinn does not apply to alir tracked objects and s
ipdated anly owecasionally, it would create undesirable burdens on data
nrvessing 1t incorporated directiy in the main data store; instead
nrapertv lists are allocated dvnamically when and if needed.
Partioaglar care was taken to make sure that the benchmarks were as
privalent s onoasihio, given tne cyntact ¢ .rd semantic limitations
vothe two AN

The resuiting o tierences in perfomance »ere as expected. LISP
ciearly ont-pertomed Pascal when denamic capabilities were required,
bt Ard poorly when a siquential paradign wes more appropriate.  Track

CALtIAtIon s another FAS situation where symbolic processing should
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emerge a clear winner since, as the OTI study pointed out, considera-
ble savings in calculation could be realized it closely clustered
objects can be treated as a single object tor aralytical purponses
until such a time as their tracks diverge. On the other hand, compu-
tation intensive tasks such as discrimination and calibration would
undoubtedly perform better as sequential implementations.

The solution is clear: real-time Al algorithms should be
developed for an implementation system which allows a true combination
of sequential and applicative processing. We therefore propose a
strategy that utilizes available methodologv to combine the two

computational paradigms. Since an implementation of this type must

clearly bridge two distinct enviromments, the strategy is referred to

as environment spanning. Although it represents a somewhat radical

departure from the typical implementation system, the description and

execution systems remain unaltered and no special equipment or

techniques are necessary to eftect the change.

Enviromment spanning begins during the initial program design

phase, when the implementation system is originally selected. The

problem solution, rather than being expressed unitormly in terms ot a

single paradigm, is partitioned into groups of subtasks suited to

sequential and applicative processing. The criteria tor assigning an

activity to an environment will normally be those established 1n

previous sections, although they do not preclude the possibility ot

utilizing algorithms or modules which have already been implemented

according to one paradigm or the other. The software components from
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the two environments are ultiwately 1nterfaced using one of the

enviroment spanning me:thods descrityxd below.
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4.3 Fnvironrent Spanning Imolementations
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Envircament snanning represents « tvpe of heterogeneois comput- ;-\. -
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ing enviromment, that is, a configuration in which dissimilar hardware :‘,‘;\
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) : . e
and/or software systems functica cooperawivelv. The exponential EEA
- L
N increase in available hardware and software components during the past NN
b o »
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physical elements rather than snftware facilities. Since enviromment N
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, spanning affects only the implementation system, the actual hardware : )
B configuration is irrelevant. What is essential is some means of NN
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The most straightforward environment spanning method is the

—

’ simultaneous operation of sequential and applicative systems in a 7_-:?_'_

| [ SN

« . . : . RN

) parallel architecture. Figure 12 illustrates thi- tvpe of configu- N OAYE

\ AT AT
NS

ration; the arrangement is equally suitable when the applicative
. environment is superimposed on a sequential processor. The components
are developed independently on the two processors and eventually
exchange signals and data via the coammunication channels established
for the parallel system. At least two symbolic processor mamitfactur-
y ers are currently engaged in developing architectures which combine

symbolic and sequential processors linked bv a common bus, but no

3 N
, AN,
; systems are commercially available at the present time. For this ;f:-:?,:’_:-r
LSRN
g N
N . . . RS
reason, although parallel processing is conceptually the clearest tomm :_-.-,-.::-».
A

L5
o
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of enviromment spanning, it cannot be considered consistent with our

"
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‘v}'- “r Ty
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objective of staying within the confines of available methodology.
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; A second spanning mechanism is implicit in miltiprocessing ¢n-

2

i
L4
K

viromments (for our purpnses, it is immaterial whether the processes

! ';..Q.

o
»

are in fact executing in parallel or the concurrence is simulatead). _.-;.:';'.:‘.-:
4 - '.-.‘--.
: Here, as depicted in Figure 13, separate tasks are created re- }.:'_
S DR RLN

presenting the sequential and applicative environments. Remote e
. e e
. activation and the passing of functional values are handied through ‘-,:::
: the semaphorce/mailboxing facilities of the underlying system. E\;";—:‘.;

Unfortunately, not all multiprocessing environments allow the e
. spontaneous creation of applicative tasks. In these cases, the most
: likely alternative is to construct the applicative environment as

though 1t wrere the only means of processing:. then, using the
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intersequencing method describsd next, itnvore a sequertial module

which eftectively spawns the second environment. This would aliow
concurrent processing on a simplidied le=t,

The third method has no particular system reguirements other
than the ability for one envirommenrt © ioaveke modulns created in the
other; this is trus ~f mosSt orera*ing sy -tems wilch sunport both
symbolic and procedural laaguage implemertations. Intersequenced
enviromment spanning ostabl ishes a masier prooessing enviromment which
invokes eliments nf tha siave cnviromment wen needed (see Figure 14).
Restrictions «n the interfacing between «ymholi. .r.! procedural
language modules in mose operating svstams equire that the master be
whichever component includes & language onv:rommen® layer, normally
the applicative. Under VAX/VMS, {or example, a LISP program can
directly invoke modules written ir either svmobolic or procedural
languages, but no procedural language can i1nvake LISP modules since
thevre is no way of establishing the noeded LISP envirconnant layer.

Which of the three solutions is sclected obviously depends on
the nature of the available hardware. The actual implementation
method could be transparent .o the soltware d-sigrer/implementor if an
environment spanniay interfare were developed, This would
automatically re ormulate communicating compeacnts as needed to
contorm to the s itic raniircmenia of the sponnung mechanism.

[t should He roted that ervirommert spanning does not impose anv
relative haldance of processing on the two systems (although within an

environment more typical mul tprocessing may, of course, be going on).
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The issue here i5 to partition progran acti/:ties, not in order to
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distrihite processing according to any particular pattern, but rather
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to allow the expression and ultimate execu*tion of eich task in the
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enviroment most appropriate to it. Optimization potential is limited
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bhv a combination of factors, each related to the comrutational

parardigm chosen tor the implsmentation. By realisticaily assessing
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the characteristics of each progran compcnent and assigning it to an
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S5 Conclusions

The stringent constraints imposed on computing systems 1n the
B\d/C3 setting have forced the 1ssuses ot program pertormance on thee
artificial intelligence communitv. Can Al algorithms he implemented
efficiently using available svstems and methodologies? The answer
requires an objective assessment of the ditticulties inherent in the
transition from problem conceptualization to physical reality. The
implementation system, which provides this transition through siucces-
sive interpretations of the problem solution, has a profound impact on
performance that simply cannot be ignored.

The immediate effect of the implementation system is that it
estahlishes a processing environment within which the problem solution
is expressed. Two alternatives are currently available, sequential
and applicative. Thev present conflicting views ot the underlving
architecture as von Neumann or not, hut this is not their most
important difterence. The essence of the processing enviromment 1s
that it establishes a computational paradigm which shapes the
development and ultimate performmance of any program eoxoecuting within
it.

The sequential processing enviromment views a problem solution
in tems of the Turing model of computation, which isonlates program
control trom data values in immutable and mutable stores, respex-

tively. The procedural languages provide a natural expression ot this
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approach bhv treating nrogram svinbosls as references fo storage

locations and (imitiag processing to the sequential or

conditi nal

execition ot hasic operations. In termrs of performance improvediont,

the factors of greatest influence are carly biading, which permits the

propagation f values on a local and/or global level to minimize

recomputation, and a heavy dependence on iteratinn., which aliows the

movement of instriictions from more to less frequently executed por-

tions of the contrnl store. The majior obstariss to nptinizatior are

the dangers posed by side effects and alias:ing and the cifficultvy of
recognizing notentially parallel operations.
The applicative processing environment, on the other hand,

oxemplifies the recursion theorv approach to computs:iility, viewing

control and data element< uniformly as values. A svmbolic language,

which expresses nrocessing in temms of functionai composition and

recuarsion, is the most natural descriptive tocl tor this model.

Unlike their sequential counterparts, applicative programs permit no
side effects or aliasing and possess an implicit concurrency which

makes them admirable targets for parallelization. Their dependence on

reciirsion and late binding, however, seriouslv hampers other attempts
at optimization,

In terms of the implementation of Al algorithms, neither

sqnential nor anplicative processing can he seid tn be unequivocably

sunperior to the other, FEach anproach is 1nherently suited to a

snecifie set ot probleme and ynappropriate for others., This is

retloected in the tact that virtually all existing algorithms were

70

Bl

0T, T, Py PR

WA
AR
N f 1 l' . .
\
OO

vy
"“'%
Pd

£ o
AEARERN
v

RN,
N
gy

r

~r v

S
,

.- e

T
. "'r"-"‘l"&f'
e
Yy

o 7
'S
I
)

R
PR
<, % Y

Vs
'.
" a
’\" 1 .
s % "

h I
b
A

v,

.
.

POrs
iy
4 I'x"’_

37
s

.

,'

A A A
45N
OIOANRX

-

A

‘) r .' .
Lt
ORI

S WA N

QQ;
S
e’

.")
NN N
’:'TQ
g 4 N

o . w

XN

WA



——w

»
-

AR P Al Sl S A b

developed within a particular environment and that transtomations
from one to the other are ditfficult and generally inetticient. The
issue here is not the promotion of particular larmuages, implemen-
tation schemes, or computation systems. It is, rather, that the
complex real--time svstems required for Al processing in the BM/C3
setting comhine some intrinsicallv sequential teatures with others
that are intrinsicallv non-sequential. The use ot a homogeneous
imnlementation system is like chonsing a broom instead ot a shovel tor
a job that requires both: it can be done, but not efticiently.
Spanning dissimilar enviromments facilitates program improvement
by allowing the assignment ot subproblems on an individual basis to
whatever system offers the best chance for autcmated optimization, At
the same time, the strategy takes into account the fact that the
number and speed of operations may have less efttect on performance
than design factors such as how pattern data is conceptualized or
which heuristics guide allocation activities. A heterogeneous
environment also maximizes this human optimization potential by
allowing the designer/implementor to express each problem in the most
natural way, without undue concern for the execution details of
interacting solutions. It is to be hoped that an algorithm which 1n
its entirety is too unwieldy for signiticant pertormance improvement
can bhe reduced to a tractible level hy this divide-and-conquer

apnroach.
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Appendix A

Optimization Techniques for Sequential Envircenments

The imnprovement techniques typicallvy applied by eptimicers in
the sequential onvironmert assume a bipartite immutuble/mutable
program organization as discuss~d in Chapter 3. 4 r-lated 1ssumption
is that there bhe a clear distinction between symbols referencing
program control uni1ts and those defirning storage «lements (program
data versus problom data)y. Therefore, with few cxoet ons procedural
languages require that user-d=fined symbnls, or identifiers, be bound
to the appropriate location in the control or dita segment prior to
execution. This property, which allows the association ot symbols to
locations through a static analysis of the program, is called early
h_i_y_i_i_rg." and 1s a majer difference hetween sequential and non-
smquential pincessing.

Prior to the anpplication of optimizing transtomations, control
flow ancd data flow analy<is are pertormed to establish the semantic
framework (or "meaning”) which must e nreserved. The basic semantic
element ot a proeram, which ve wili cali a logicel unit, is a maximal

cnllection ot instractinns in a textial sequence that are always

1 "Earlv binding” is used here to indicate the pre-execution
ability to associate <mhols with ottsets into a1 storage area. In the
strictest sonse, lncal variables are bound dynamically, since the
storage area itself i not allocated unti1l the unit's prologue is
activated.
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executed in order as a single entity.1 This means that no transter

&

»
)
L
l'-l

[

occurs to any instruction in a logical unit except the first and that s

o
LY

N
2
~

once the first instruction is executed all others will be executed in

AN
)
\'\’

;

sequential order prior to transfer out of the unit. A program is Q

divided into logical units by identitying the statements which serve

"! »

o

.
l'
el

:_: as entry (branch-in) and exit (branch-out) points. \
In control flow analyvsis, the program is partitioned into e -~
logical units and a flow graph is constructed whose nodes are the ,
; units and whose arcs represent possible flow of control between units, ;
Y o
' The nodes are then grouped to form logical intervals, which represent h 'J
- CAE ST
sequential series of units dominated by a single entry node, but .-‘Z‘E:
possihly having multiple exits. The importance of logical intervals E‘:EE
) is that they may be "reduced" to single nodes to form a new flow e
graph. This is then partitioned into new logical intervals which are
subsequrntly reduced, and so forth, allowing the analvsis of -- and
1 hence the anplication of optimizing transformations to -- successively
larger nortions ot the program. -
Data tlow analysis is concerned with the legitimate contigura- :
tions of the data segment. Since D can be represented adequately by .
N 4 , o BN
N recording the changes brought about in each transition trom Dy to ,-.:"_\::\j
N RN
Dh+1. the primary unit for data ftlow analysis is the state vector, :::E:'.
which lists those data elements whose contents are altered by the e

P

B
- a'- .

1 [ogical units are referred to elsewhere by a variety ot names,
including basic blocks, logical hlocks, and control groups.

a v
PR AIRY

oA
.
1

—
.
&

« r A

75

s
e s,

]
s 'r".'//: A
AN

L" . :

[
e s : »
LS

e

.
.
»

'

B T R e N T I O L
o A N S S R TR SRR S A T NN I S
JL’J;’AL’J&; LA PN A AP N AT AL Y G0 P P D R P 1"--‘.[}141‘ A A I T S S N R A S R AR e 3. T




«Tats 1T s A

i e N

1nstruction corresponding to thst, <tate,  Consolidated state vecters
can be used to represent the data <egmen! associated with cuch lopical
unit or ‘nterval of the progrem. focal datra fionw analvsis conrn-
trates on the state vectors of adjacent logica: nnits, while glohal
analysis correlates alterations to the data configurstions whi.ch occur
from one interval to annther,

The sections which teliow descrine the nsrtomance: lmprovement
techniques that have boen developed for use in sequentidai pProcessing
onvirnnments. The optimizing transformations tvpically applied to
procedgural programs are categorized according Lo the ger-oral type of
analysis required for implementation. This is followed by a section
adriressing the question of how much performance can he expected to

improve through the application of sauential optimizations.

A.1 Typical Optimization Techniques

The optimirzations which are outlined in the following pages all
presunppose a4t lexst a4 minimal level of control ang dara flow analysis.
For convenirnce, they are grouped into four general categor'ieslz (1)
expression simplitication, (2) code rearcangeament; (3) optimization of
data stecase arots: {(4) target-specitic optimications. Examples are

given of some of the most common techniques. Although they are

! Althnugh there is no stardard terminology tor optimization
tochnigues, an at:empt has borer made here to correlate terms from a
variety of soureos,
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portrayed using a sort of pidgin-Pascal, it should be clear that most
of the transformations are independent of any particular language
structure or level of implementation. In general, individual
techniques may be applied at the local and/or global level; the degree
nof analvsis required for global optimizations, however, constrains
their use in many settings.

The first class includes some of the most widely applied

techniques (see Figure 15). Intuitively, expression simplitication

deals with improvements to the way in which numerical computations are
specified. It encampasses a large subclass of transtormations known
as "constant folding" (also called compile-time computations or
constant expression evaluation): the attempt to pertform operations
whose operands and/or results are known at compile time hecause they
involve numerical constants. A second type of improvement, "common
subexpression elimination" avoids the re-computation ot values already
calculated for some ecarlier operation. "Strength reduction" sub-
stitutes "weak" operations for "strong" ones to improve execution
speed and/or make possible further optimizations; it includes attemnts
to reduce the processing needed to calculate arrav ofttsets.  "Subex-
pression reordering” takes advantage of commutative and associative
properties and algebraic identities to reduce temporary storage nesds
and to facilitate other transfomations. Finally, "value propagation"
eliminates or minimizes the need for storage transters by replacing
references to an identifier name by references to its value.

The concept ot early binding is obviouslv crucial to these
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techniques. An optimizer which applies expression simplitications
must perform a detailed analysis of state vectors to determine when a
value is altered, as well as incorporate mechanisms tor associating

algebraic properties with individual instructions. A specitic

transformation must normally be applied more than once and in

A

alcernation with other techniques to be truly effective.

A

The category of code rearrangement, as its name implies,

encompasses transformations designed to improve the ordering ot

instructions in the ram's code segment; some common examples are
p

Y

SN PNR

illustrated in Figure 16. The movement of invariant expressions out

N

.

of loops, reordering of independent operations (statement flipping),

B
>

1 4

elimination of induction variables, and hoisting of array oftset

'(t;'fft’.'

Py

calculations from inside loops all represent optimizations commonly

/

referred to as "code motions". These techniques attempt to minimize

Tk 2 e

the frequency with which a given operation is pertormed and are

L3

particularly important when a large number of array references are

used, since offset calculations normmally require costly multiplication

L

operations. "Loop reorganizations”" (linearization, tusion, and

LAY ASYY oW

unrolling) reformulate loop structures hy fully or partially expanding

A -

them to sequential form in order to minimize the number of tests and

P

P

branches needed to control iteration. "Boolean minimization" performs

o

LYY
‘oA

a similar function by reordering comparisons in order to minimize

testing.
Other types of code rearrangement are ditticult to depict

graphically. Code elimination techniques reamove redundant instruc-

79

vl

s

TP

R A e A g R v G (L QR B o Sy

A




-, Technique Example’

%
code motion FOR I := 1 77 N DO BEGIN A
X := A[N] “oiale

211] := ABS(B[I]) NN

END AN

l :_\.__-»._'\.
¢ AT

X := A[N] .

§OP. I := 1 TO N DO BEGIN SN

A(I; := ABS/BII}) \f\:\;

FOR I := 1 T4 10 DO BEGIN e

J = 1+4 -\_':-_';-\::

XII}] := B[1,J] e

Y{1} := B(1,J-2)

END

FOR offset := O TO 36 BY 4 DO BEGIN

4
X
\"'

2

LA

"i‘;'\*'i g
{X+toffset] :~ (B4offset+l$] et
(Y+offset] -= [B+offset+8] A

— END " _-."p.
loop reorganization FOR I := 1 TO 10 DO SIS
FOR J := 1 TO 10 DO :./'.’.(:J“'
FOR K := 1 TO 19 DO .;-.ﬁn.::-.
READ (X[I,J,X]} '»:ﬁa"

»

5"
ol
o

- Ry
J NN
FOR offset := 0 TO 996 BY 4 DO
READ ((x+offset])
boolean minimization IF A AND (B OR C)
THEN X := 10
ELSE IF B OR C
THEN X := 0
ELSE X := -10

IF B THEN GOTO L1

IF C THEN GOTO L1

X := -10; GOTO L3
Ll: IF A THEN GOTO L2

X := C; GOTO L3
L2 X := 1C

L3

L 4

The use ci "oi'set” is an attempt to indicate the calculation of array
subscript offsets; a size of 4 bytsa per slernent is assumed

Figure 16. Examples of Code
Rearrangement Techniques
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tions, such as the assignment of a value to a variable which is not
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referenced until after a further assignment, or unreachable (dead)

N
XX
5 %

_y
)
%
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code positioned after a branch-out point but betore a corresponding

hJ

‘N

<
Y
(%

branch-in. These transformations are often necessary after the
application of other improvements. Because ot the high run-time
overhead associated with the prologue and epilogue code of procedure
uriits, some optimizers also perform procedure integration (in-line
substitution), which replaces each occurrence of an invocation hv a
copy of the instructions forming the body of the subprogram.

The third class of improvements, data storage optimizations,

reorder the data segment to minimize program space requirements. The
information encapsulated in the state vectors allows the identiti-
cation and elimination of useless variables, such as unreferenced
identifiers or those rendered extraneous through constant propagation

or other optimizations. Live variable analysis reveals the effective

span of individual identitiers so that variables with disjoint lite-

)
-
-
.
.
.

times may be overlaid in the same storage location. Time improvements

N I ]

x

can also he realized by reorganizing data elements to preserve
boundary alignments which result in more efficient data access or to
take advantage ot reference adjacencies in order to minimize memory -
page faults. Finally, when performed in conjunction with expression -
simplification, storage analysis allows the replaceament of run-time

assigmments of constant values by static (campile-time) initialization N

ot the storage locations.
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Target-specific optimizations are the most widely used tech- L
N
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i niques since they are often directiy incorporated in translatien ®
A )
v S
N . Lo . N ar A
» mechanisms. These 1nclude the use of mpgrovement algorithms in such L
v NN
» . . . . . - L A
ke activities as register allocation, target instruction generation, and }.‘}‘
L o N . Yo
o instruction scheduling. "Peephiole nptimizatiorn”, ajpnirca during the
4
' , . A
: last stages of target code generatioi, anaiyzes short sequences ot -
I ,"\
‘ . . . J.
- code and attempts to reorder or eliminate instructions. For example, '&;
N ”
miltiple instructions such as cascaded branches or revundant condition
. :"‘u
) tests can be comhined into a single operation having tihe same effect. Pt
P
\d . a4
¥ The snbstitution of targei-specitic instructions which are shorter in {:}f
A
¥ format or exocute faster 1s also of value at this level,
PN,
] . . . . -
. In summarv, a wide range of techniques has benn established for A
; . | _ . X
onptimizing programs in the sequential processing environment. Untfor- »
; v, vy
! tunately, some of the techniques are selt-defeating —- {f not actually
. contradictory — when used in combination with others. An optimizer's
i . .
; et frctivennsss depends to a great extenl on the successful interplay of
a variety of techrniques. Most existing versions limit their activi-
ties to a relatively small nunbor of transformations sharing similar -
L 4
5 analvsis needs and having significant impact on whatever types of s
) -
i input programs are decmed typical. ..
. N
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mentioned in Chapter 2, the first difficulty is establishing just what
to measure -- i.e., what constitutes an average program, average
run-time load, average input, etc. A second problem is how to isolate
the effects nf a particular improvement when the interaction of
transformations is so critical to their success. The issu¢ is turther
complicated by the general inadequacy of available methods tor
measuring run-time behavior and the unintelligibility of the results.
In short, the literature is full of references to optimization tech-
niques but there is a noticeable lack of correlation between theory
and practice, and few statistically significant tindings.

Knuth made the first attempt at compiling program statistics
when he compared FORTRAN code written by Stanford students with that
of Lockheed programmers, using both static and dvnamic analyvsis
techniques. This study [Knuth 71] remains one ot the most cxtensive
to date, but the results are of questionable use because ot the heavy
bias due to the syntax of earlv FORTRAN. [Elshoft 76] and [Sarraga
84] performed similar analyses of General Motors programs written 1n
PL./I, while {[Robinson 75] and [Zelkowitz 76] provide the best examples
to date of academic programs (written in FORTRAN and PL/I, respec-
tively). Since reasonahly scaled analyses of other programming
languages are not available, only those findings relevant to generally
anplicable optimization techniques will be cited here.

The mostly widely quoted statistic is Knuth's "90/10 rule",
which stated that 90% of total time was spent executing just 10% ot a

program's statements. Input/output operations were tound to consume
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an inordinate share of processing, with 5% of the ¢ de aceounting tor

-

more than 25% of measured time. In terms ot non-1/0 code, under 4%

:')‘;. 4

occupied 50% of cxecution. These tipgures imply that significant

5

e

improvement might be realized if optimizing eftorts can be concen-
trated in the proper areas.
Some of the statistics provided by static analysis are less

encouraging. [Knuth 71] found that 68% of assigmment stal~aeats were

'Y
-~

simple replacements which copied a value from ooe location to another;

'y
r

b
| 4

these results were confimed by [Elshoff 75!, who reported 77.6% and

‘l s."/ .

2

40%, respectively. The same saurces cite an additi nel 2%, 21%, and

5N
LRCI R

29% as assignments 1nvnlving the evaluation of no more than one

AR A

onr~rator. In terms of optimization potential, this indicates that

K

~oven sophisticated expression simplification techniques may have

kT

negligible offects on performance. This view is contfirmed by another

"1 ’l *

PR

researcher [Carter 82), who found that most blosks in Pascal programs

included only two to tour assignments a2nd tewer than two common

&

subexpressions. [t seems realistic tn estimate that while expression

oAy

simplification and code rearrangement might save np to three-quarters
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of the time spent by numerical computation-intensive programs, the
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same techniaues wonld probaoiy s w jittle effect on non-numeric
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programs.
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The eliminatinn of redundanrt assigmments and useless variables

srems more promising.  [Flshotf 76] reported that of 384 identifiers
in an average program, 107 w¥or~ unreteronced.  [Sarraga 84] performed

a partial analysis of variable use which indicated that some 5% of
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assignments were useless. At the same time, other tigures compiled by
Elshoft underscore the difticulty of performing the global data tlow
analysis needed tor this type of optimization: h. tound that 13% ot
the gaps between successive reterences to a single identitier were
more than 100 statements in length.

The implementors of optimizing compilers have on occasion pub-
lished data indicating the diegree of improvement measured by applving
varying levels of optimization., Figure 17 illustrates the results
cited by [Cocke 80) and [Brownsmith 84], campar.d with the improve-
ments implemented manually by [Knuth 71]. The eftects ot the
language-independent VAX-11 back-end optimizer designed by {Anklam 82
and currently used by the PL/I, C, and PEARL compilers, presented in
Figure 18, were measured by inhibiting individual transtormations on a
series of benchmarks. [Wulf 75] attempted to quantity the etftect on
performance ot cach optimization performed by a Bliss-11 compiler (sec
Figure 19); the intention was to derive a formula expressing the
cumilative result of varying combinations, hbut tnis did not prove to
be practicable,

As the fipgures show, there is a significant range in pertormance
from one optimizer to the next and from one benchmark to another. In
some cases the effects of individual transtormations almost escape
measurement (the effects of loop invariant relocation and suhex-
pression elimination on benchmark AB-5 in Figure 18, for cxample),
while in others efticiency increases dramatically with the addition ot

a single technique (e.g., the eftfect of loop invariant relocation on
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Level of Parformance
Minimurn | Average | Maximum

Ch

Technique Measure

1
Local Optimizations

)

Knuth 71%

Cocke CYe)
54
Brownsmith 63

Local plus Global
Optimizations

Knuth time 11 ?8 91

Cocke time 19 42 61
space 38 55 66
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Included local constant propagation, elimination of dead code, and
local register allocation optimization

Added global constant propagation, strength and frequency reduction,
and global register allocation optimization
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Figure 17. Estimated Effects of Optimization
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AB-4 of the same figure). The extreme variability of these results
illustrates the difficulty ot realistically predicting the effects ot
isolated improvements.

No discussion of optimization would be complete without mention
of parallelization. Recent years have seen an increasing interest 1in
the development of translation algorithms for converting sequential
programs to versions suitable for parallel processing. Available
methods evolved from data tlow analysis techniques and tocus on array
operations and looping structures as the primarv candidates tor
parallelization. For example, the loop distribution algorithm for
extracting parallel code assigns individual iterations of a loop to
different processors. The pipelining algorithm, on the other hand,
splits the loop into several component sub-loops, each of which is
then assigned to a processor. In general, loop distribution is
preferred wi.en the loop body is small and the number of iterations
large; pipelining is employed when the proportions are reversed.
Untortunately, a substantial amount of analysis is required to
implement these techniques, nor are they unitormmly applicable to all
types of data elements and looping constructs. Furthermore, no
conclusive empirical studies of the degree ot improvement realized

through parallelization have emerged to date.
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Appendix B

Optimization Techniques for Applicative Eaviroaments

As pointed ont in Chapter 3, optimizations based on normal
control flow and data flow analvsis are inappropriate in non-
smuential enviromments and few optimizing transformations have as yet
heen developed specifically for applicative processing situations.
Thos~ that are available can he generally categorized as affecting
cither substitution or simplification activities,

The following sections discuss optimizations currently im-
plamented in applicative enviromments., As in Appendix A, available
techniques are described in general terms and then the results of
studies examining the effectiveness of improvement activities are

presented.

B.1 Typical Optimization Techniques

Substitution activities are optimized by improvements in heap
storage management. A heap is difficult to implement efficiently,
gsince it requires that a large, general-purpose siorage area be made
available for us~ on an unstructured, by-need basis. When a program
eoloment is detined, space is allocated to it from a free-space list
and associated with the corresponding symbol by means of one or more

levels of pointers, [If the element is subsequently redefined, the
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pointer or chain is altered to point to a new Incation. Note that "'

r gty

there is theoretically no limit to the number ot pointers which can '.:::ﬂ.::‘:a'&
¢

Al

reference the same object. The term garbage refors to a location ":’::EE::;:“:

O

GO

which is no longer referenced by any pointer, and should therefore be Ao

) 2

placed on the free-space list. A dangling reterence occurs when the o :\j

N_/.\ (N
-~

object is returned prematurely to the free-space list, even though one ':_;Q &

. oAy

L)

or more pointers still refer to it. Traditional heap storage systems ? "

. PR )

avoid dangling references by creating a unique object at each .:o.":;.:.:.":
]

l'. ‘l"

definition. This allows garbage to accrue rapidlv; when the %&:{:

ChGL

free-space list is exhausted, computation is suspended while a garbage ' ®

RNy

collector searches the heap area, identifies garbage eloments, and , ..D::’:‘:f:

. .‘ﬂ' 'l

returns them to the list. > :.:

qmd: "'I‘

Garbage collection is clearly an attractive candidate for opti- - ®

NIGR,

mization. Established techniques include the use of hashed reference- :‘ Ay
(Y

Nl ¥

count tables to keep track of active storage and/or the subdivision of tr):'s‘i:"‘.\

NG

storage into static, read-only, and heap areas, which somewhat raduces .-

r:':r:Jl‘r

the area to be collected. Incremental ("on the tlv") collection j_'.‘( ;

AN

processes a small section of heap storage each time a specitic .»:.-":'“.

PR

operation is perfomed:. this distributes the overhead more evenly over e

time but requires more space than other methods. "Compile-time

garbage collection” attempts to replace some operations which create

new definitions by altering the pointer lirks, but destructive changes
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A second type of optimization related to substitution is

y peculiar to LISP-based implementations. Most versions of LISP ac-
o caomndate one or more special tvpes of dynamic or "fluid" variable
binding. With traditional binding (deep binding). each iime the fluid

' variable is bound a tree of symbol tables must be searched to find the
current value. The observation that the number of rebindings is small
compared to the magnitude of the search led to a technique called

shallow binding, whereby a current value cell is maintained for each

- v

name. The old value is stacked whenever a new instance is bound so
that it can be restored easily when needed.

Additional techniques have been developed to improve simpli-
fication activities. Open coding involves the in-line expansion of
common primitive functions and/or conditional strictures (similar to
' procedure integration in the sequential environment). Calling

; sequence improvements are designed to expedite linkages between

subprogram units. These make use of jump vectors, local branches, and
. linkage tahles to eliminate calls to primitive linking routines.
. A related method of diminishing simplitication overhead is the

removal of recursion. This is appropriate when the recursion is

Auplicated s that the same values are computed more than once; such

! techniques are similar to those for lazy evaluators (see bhelow). A

. .
A,
P

second use is in functions with "tail recursion", where the recursion
NSRS
is the last a~tion of the current invocation. Since there is no need ‘_-'_“-::‘,-'.::'
| AT N "
J to establish a rew application frame, the recursion is replaced by ,:f.\
PN
some form of open coding. o
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Other schemes improve the ways in which parameters are passod
between functions, in an attempt to decrease the number of times a

symbol is evaluated. Parameter rearrangements reorder arguments or

place them in registers or on special parameter stacks. Call by name
delays the evaluation of parameters until they are actually required,

while lazy evaluation (call by need) maintains a table of values to

avoid duplicate evaluations.

Arithmetic operations in the applicative environment are
camplicated by the need to convert numeric values to and from pointer
representations. Common improvements include storing the values in
registers, on special numeric stacks, or in tables. The camplexitv of
numeric operations has also led to techniques similar to those usned by
sequential optimizers, such as constant folding, rearrangement, common
subexpression eliminationn, and peephole optimization, but on a
considerably smaller scale.

In summary, although same optimizations have been developed for
the applicative enviromment, they are not as well understood as aro
the techniques discussed in the last chapter. Few compilers attempt
to incorporate more than a handful of improvements and their inter-
relationships are only hazily defined. The most discouraging fact is
that only a small percentage of existing implementations offer any

significant degree of optimization.
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! B.2 Potential for Optimization T e

c‘: . . |~:'|:l':‘

XN For the reasons outlined in previous sections, it comes as ':,l‘.:,'.:,;

i“ .‘\.".l:."

":‘ little surprise that no empirical studies of statistical significance :"‘(:‘;:.:':"

0“ Y .J.

. have as yet appeared to establish the effectiveness ol optimization in et

S

© " '

:: the applicative enviromment. Most recent research efforts have been 3 Q‘:{

:‘. ) w’\

BAT directed instead to the development of architectures which process _;\“'

) ¢ Wiy

W . ) ) s
applicative programs directly rather than via software simulation.

Xy

::: One recent study, however, compared the performance of a series of

1|“

i:‘. LISP implementations, including some employing improvement techniques

)

R

3 (Gabriel 85].

“ ,\:
~ Figure 20 summarizes the results of the Gabriel study on three "*
> RS
- systans using a Franz Lisp campiler. The only optimizations described

, - ;
are calling sequence improvements: the use of a J(ump)S(u)B(routine)
:'_ tnstruction to perform direct jumps to functions included as part of o
S :_‘.
;' the same compilation unit, and the incorporation of a transfer vector -'?_
A

o

to replace the invocation primitive routine. It should be noted that

"xp
i
b

all of the benchmarks tested were task-specific, and therefore are

R
XS
' I

ord
“5',3:

subject to the biascs described in Section 2.2. {‘;’:‘,‘;
3 The results illustrate what appears to be a chronic problem with f"(-’?'-
_':‘ applicative optimizitions. Although quite substantisl improvements in E{E-i’.'::.‘:
\ run-time behavior are noted for some tests, performance is actually :‘jhﬁ
by

degraded in other cases. {[Bruynooghe 84] reports similar results for

the application to PROIOG programs of a technique called "intelligent o

,,
R AR

backtracking”. His tests were run on typical smallscale Al problems,

-

with resiulits that ranged from 0.3 to 219 (with an average ot 112)
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Figure 20. Gabriel's Benchmarks
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percent of the time required for the unimproved versions. This
clearly violates the fundamental rule that an optimizing transtorma-
tion be guaranteed at least not to adversely affect performance.

The shift from sequential to non-sequential architectures, on

) ¥

the other hand, seems encouraging. Any program performs significantly

s
PP

‘l"'l}\ "l.

l‘n’; A

DR e )
‘l

better once the software interpreting layers are eliminated fram the

L)
X

applicative environment. The incorporation of paralleiism will

-

undoubtedly improve this situation even more, since the locality of

20}
P d
3

offrct and referential transparency properties of symbolic programs

g?}
.?I <55

make them apt candidates for parallelization. Furthoermore, the

L

"generator"” primitives of the functional languages (e.g., the MAP

".’;:’%/ o
P A {5

~. «
4

b T Y g )

%5

routines of LISP) are implicitly parallel constructs which can easily

ARy
N

L3
o

be adapted to concurrent processing situations. Finally, garbage

‘;-.

<

»
U

cnllection activities have already been targeted for implementation on

P
by
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separate, dedicated processors, with the promise of substantial im-
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provements in execution time.
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COMMANDER
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BALLISTIC MISSILE DEFENSE SYSTEMS COMMAND

ATTN: DASO-H-MPL
PO 80X 1500
HUNTSVILLE AL 35807-3801

COMMANDING OFFICER
NAVAL AVIONICS CENTER
LIBRARY =~ D/765
INDIANAPOLIS IN 46218

COMMANDING OF FICER

NAVAL TRAINING EQUIPMENT CENTER
TECHNICAL INFORMATION CENTER
BUILDING 2068

ORLANDO FL 32813-7100

COMMANDER

NAVAL OCEAN SYSTEMS CENTER

ATTM: TECHNICAL LIBRARY, CODE 9642
SAN DIEGC CA 92152-5000

US NAVAL WEAPONS CENTER, CODE 343
ATTN: TECHNICAL LIBRARY
CHINA LAKE CA 93555

SUPERINTENDENT (CODE 1424)
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5100

COMMANDING OFFICER

NAVAL RESEARCH LABORATORY
CODE 2627

WASHINGTON DC 20375

NAVELEXSYCOM
PDE-110-33
WASHINGTON DC 20363
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REDSTONE SCIENTIFIC INFORMATION CENTER
US ARMY MISSILE COMMAND

REOSTONE SCIENTIFIC INFORMATION CENTER
ATTN: DRSNI-RPRD

REDSTONE ARSENAL AL 35898-5241

Advigsory Group on Electron Devices
Hasmond John/Technical Info Coordinator
201 varick Street, Suite 1140

New York NY 10014

UNIVERSITY OF CALIFORNIA/LOS ALANMOS
NATIONAL LABORATORY

ATTN: OAN BACA/REPORT LIBRARIAN
P.N. 80X 1563, MS-P364

LOS ALAMOS NM 87545

RAND CORPORATICN THE/LIBRARY
HELFER DORIS S/HEAD TECH SVCS
P.N., B8OX 2138

SANTA MONICA CA 90406~2138

Coemander

He, Fort Huachucs

TECH REF DIV

AT TN BESSIE BRADFORD
Ft. Huachuca Al 85613-6000

AEDC LIBRARY (TECH REPORTS FILE)
ns-100
ARNOLD AFS TN 37389-9998

JTFPRQ

Attn: Technicai Director
1500 Planning Research Drive
MclLean VA 22102

AWS TECHNICAL L IBRARY
FLoGTS

SCOTT AFB 1L 62225-543R

L8S EIGC/ELER (DMO)
GRIFFISS AFB NY 13441~6348

| R, W A, Y )
M AN




HQ ESD/ XRX
HANSCOM AFfB !
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ESD/XRSE
HANSCOM AFB 01731-5000

S

ESD/TCS-10
ATTN: CAPTAIN J. MEYER
HANSCOM AFB MA (01731-5000

The Software Engineering Institute
Attn: Major Dan Burton, USAF

S80 South Aiken Avenue

Pittsburgh PA 15232-1502

DIRECTOR

NSA/CSS

ATTN: T5112 /T0L (MARJORIE E, MILLER
FORT GEORGE G MEADE ™MD 20755-6000

DIRECTOR

NSA/CSS

ATTN: W61

FORT GEORGE G MEADE MD 20755-6000
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DIRECTOR

NSA/CSS

ATTN: R24

FORT GEORGE G ™MEADE ™D 20755-6000
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DIRECTOR

NSA/CSS

ATTN: R

FORT GEORGE G MEADE WD 20755-6000
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DIRECTOR

NSA/CSS
ATTN: RS
FORT GEORGE G MEADE WD 20755-6000

DIRECTOR

NSA/CSS
ATTN: RS
FORY GEORGE 5 mMEADE ¥Dp 20755-6000

DIRECTOR

NSA/CSS

ATTN: SO031

FORT GEORGE G MEADE MD 20755-6000

DIRECTOR

NSA/CSS

ATTN: S21

FORT GEORGE G MEADE mD 20755-6030

DIRECTOR

NSA/CSS

ATTN: V307

FORT GEORGE G MEADE PD 20755-6020

DoD COMPUTER SECURITY CENTER
ATTN: C42, TIC

98)0 SAVAGE ROAD

FORT GEORGE G MEADE m0D 20755-6000

AUBURN UNIVERSITY

DEPARIMENT of COMPUTER SCIENCE & ENGINEERING
107 ODUNSTAN HALL

AUBURN UNIVERSITY, ALABAMA 36849-3501

ESO-MITRE Software Center Library
X Mg J.A. Clapp

MITRE Corp 0-7C mS A-359
Burlington Road

Bedford PA 017130
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Sottware Engineering Instityt i
i e Tech
Cérnegte-ﬂellon University Lioracy ?
Pittsburgh, PA 15232
ATTN: Korola Fuchs

Col J. Green

Dirs STARS JPO '
Rm C-107

1211 South fern Street

Arlington, VA 22202

S0IO/S-BF (Lt Col Audley) 1
The Pentagon
Washington DC 2C301-7100

SDIO Library

IDA

1801 N. Beauregard St
Alexandria VA 22311

SAF/AQSD (Lt Col Harry Rosen)

The Pentagon
Washington DC 20330

AFSC/CV-0 (Lt Col Ben Greenuay) 1
Andreus AFB “D 20334-5000

HQ $B/XR (Col Peura)

PO Box 92960

Worldway Postal Center

Los Angeles CA 90006-2960
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SD/CN (Col Wilkenson)
PO BOX 92960 by
Worldway Postal Center L
Los Angeles CA 90006$-2960
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ESD/®D (Col Paul)d
Hanscom AFB MA (01731-5000
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AFSTC/XLX (Lt Col Detucci)
Kirtland AF3 NM 87117

USA SCC/DASD~-H-SB (Larry Tudbs)
PO Box 1500
Huntsvil le AL 35807

ANSER Corp

Suite 820

Crystal Gateway 3

1215 Jefterson Davis Highway
Arlington VA 22202

IDA (Albert Perrel la)
1801 N. Beauregard Street
Alexandria VA 22311

AFOTEC/XPP (Capt uWrobel)
Kirtland AFB N* 8717

Af Space Command/XPXIS
Peterson AFB CO 80914-5001

S0I0/S-8BX (Capt Mart)
The Pentagon
Wwashington 0C 20301-7100

SDIO/S-8PF (Maj James Price)
The Pentagon
Washingten £C 20301-7100

SDI0/S-8" (Ma2j Snwa)
The Pentagon
Washinaten 0C 20301-7100
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SD/CNI (Col Hohman)

PO Box 92960

Worldway Postal Center
Los Angeles CA 90009-2960

'

N

Py SD/CNIS (Lt Col Pennell)

2 PO Box 92960

* Worldway Postal Center

. Los Angeles CA 90009-2960

“ SO/CNu/CWX/CNB

g PO Box 92960
Worlduay Postal Center
Los Angeles CA 90009-2960

e
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: ESD/MDS (Lt Col Oldenberg)
Hanscom AFB mA 01731-5000

)

k %,

W

l

: ESO/MON (Lt Col Leib)

Hanscom AFB MA (01731-5000

) DIR NSA (V&2 Maj Maorgan)
% 9800 Savage Road

Ft George Meade MD 20755-6000
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